凸多边形航线规划算法优化

简介: 凸多边形航线规划算法优化

本文是对参考文章《无人机航线规划思路剖析,基于凸多边形地块往复式运动》算法实现的一个优化,优化内容点:

  1. 航线间隔的优化
  2. 航线外扩

注:接下来的内容,请务必掌握参考文章内容的知识点。

航线间隔计算的优化


优化前写法:


作者使用了一个非常简单粗暴的写法,即用多边形外接矩形计算出最北方向和最南方向的距离,然后除以航线间隔距离,得出规划航线的数量:


function distance(p1,p2){
  /**leaflet提供的方法*/
  return L.latLng(p1.lat,p1.lng).distanceTo(L.latLng(p2.lat,p2.lng))
}
/** nw到sw的距离*/
var dist = distance(nw,sw);
/** 得出答案*/
var lines = parseInt(dist / 20)
复制代码

然后再用最北方向的纬度减去最南方向的纬度,除以已知的航线数量,即可得到每条航线之间的纬度差,以此从上往下计算出每条航线的纬度:

var N=[];
var stepLat=(nw.lat-sw.lat)/lines;
for(var i=0;i<lines;i++){
  N.push(nw.lat - i * stepLat)
}
复制代码

我们可以举个简单的例子来表明此方法的弊端,假设北纬与南纬之间的间隔距离为 100 米,并且要求航线间隔是 30 米,按照上述代码可计算出 lines = 3,然后再计算出纬度差画出航线,我们所期望的间隔 30 米,在此平均算法后,实际的每条间隔却变成了 33.33 米,如图:


image.png

导致了旁向重叠率一直不准确。

优化后写法


使用方位角算法:已知一点经纬度,方位角,距离,求另一点经纬度。


public static MapLatLng getBearingLatLng(MapLatLng latLng, int distance, double bearing) {
        double R = 6371.393 * 1000;
        double δ = distance / R;
        double θ = toRadius(bearing);
        double φ1 = toRadius(latLng.getLatitude());
        double λ1 = toRadius(latLng.getLongitude());
        double sinφ2 = Math.sin(φ1) * Math.cos(δ) + Math.cos(φ1) * Math.sin(δ) * Math.cos(θ);
        double φ2 = Math.asin(sinφ2);
        double y = Math.sin(θ) * Math.sin(δ) * Math.cos(φ1);
        double x = Math.cos(δ) - Math.sin(φ1) * sinφ2;
        double λ2 = λ1 + Math.atan2(y, x);
        double lat = toDegree(φ2);
        double lng = toDegree(λ2);
        return new MapLatLng(lat, lng);
    }
    private static double toRadius(double value) {
        return value * Math.PI / 180;
    }
    private static double toDegree(double value) {
        return value * 180 / Math.PI;
    }
复制代码


具体实现是,以最北纬度为基准点,在航线间隔距离下,计算出 180 度方向(正北为0度)的一个点,该点则是第一条航线上的点,然后再通过该点为基准点,一直反复计算出下一个点,直到下一个航点的位置小于最南纬度为止,仍是上述的例子,计算后的航线效果如图:


image.png

航线外扩


航线外扩功能主要是为了无人机能更好的拍摄地块边界,在合成三维模型中有更好的展现。在参考文章中,作者并未对航线的外扩进行实现,我们在分析竞品时,可以看见 DJI Pilot 是有该功能的实现的:


image.png

具体实现:


仍是利用方位角算法,对航线中的两点进行向左外扩和向右外扩,示意图如下:



image.png


红线是我们外扩的距离,该距离为航线间隔距离即可。我们知道线是由两点构成的,也即意味着,航点集是一个偶数,那么我们可以每次以步长为 2 进行循环遍历航点集,每次取两个点进行经度的比较,如果 点1  的经度大于 点2  的经度,那么 点1  就要向右进行外扩, 点2  就要向左进行外扩,外扩算出来的点需要替换原集合位置的点,以此类推下去,即可实现所有点的外扩,实现效果如下:



image.png

目录
相关文章
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的优化算法及其应用
【10月更文挑战第8天】 本文将探讨深度学习中常用的优化算法,包括梯度下降法、Adam和RMSProp等,介绍这些算法的基本原理与应用场景。通过实例分析,帮助读者更好地理解和应用这些优化算法,提高深度学习模型的训练效率与性能。
154 63
|
2天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
8天前
|
存储 关系型数据库 分布式数据库
PolarDB的PolarStore存储引擎以其高效的索引结构、优化的数据压缩算法、出色的事务处理能力著称
PolarDB的PolarStore存储引擎以其高效的索引结构、优化的数据压缩算法、出色的事务处理能力著称。本文深入解析PolarStore的内部机制及优化策略,包括合理调整索引、优化数据分布、控制事务规模等,旨在最大化其性能优势,提升数据存储与访问效率。
20 5
|
23天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
23天前
|
人工智能 算法 大数据
Linux内核中的调度算法演变:从O(1)到CFS的优化之旅###
本文深入探讨了Linux操作系统内核中进程调度算法的发展历程,聚焦于O(1)调度器向完全公平调度器(CFS)的转变。不同于传统摘要对研究背景、方法、结果和结论的概述,本文创新性地采用“技术演进时间线”的形式,简明扼要地勾勒出这一转变背后的关键技术里程碑,旨在为读者提供一个清晰的历史脉络,引领其深入了解Linux调度机制的革新之路。 ###
|
2月前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
1月前
|
存储 缓存 算法
优化轮询算法以提高资源分配的效率
【10月更文挑战第13天】通过以上这些优化措施,可以在一定程度上提高轮询算法的资源分配效率,使其更好地适应不同的应用场景和需求。但需要注意的是,优化策略的选择和实施需要根据具体情况进行详细的分析和评估,以确保优化效果的最大化。
|
2月前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。
|
2月前
|
存储 缓存 算法
前端算法:优化与实战技巧的深度探索
【10月更文挑战第21天】前端算法:优化与实战技巧的深度探索
22 1
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。