独热(One-Hot)编码简述

简介: 独热(One-Hot)编码简述

1.前言

今天看Colab上的代码的时候突然看到了这个概念,抱着好奇的心态学习了一下,挺基础也很重要的一个概念,5min左右就可以了解

2.什么是 one-hot 编码?

定义:

独热编码即 One-Hot 编码,又称一位有效编码。其方法是使用 N 位状态寄存器来对 N 个状态进行编码,每个状态都有它独立的寄存器位,并且在任意时候,其中只有一位有效

One-Hot编码是分类变量作为二进制向量的表示。这首先要求将分类值映射到整数值。然后,每个整数值被表示为二进制向量,除了整数的索引之外,它都是零值,它被标记为1。

看不懂么?看不懂很正常(看懂了我觉得不太正常hhh,下面通过举例子很好理解:

这里有三个特征:

性别特征:[‘女’, ‘男’]

国籍特征:[‘中国’, ‘美国’, ‘俄罗斯’, ‘英国’]

年龄特征:[18, 19, 20]

那么,我们现在表示一个20岁中国国籍的男生,那么他的特征为:[‘男’, ‘中国’, 20],我们将特征数字化,即表示为:[1, 0, 2],但是这样的特征放入 Machine Learning 中是不可以的,因为类别之间是无序的,针对这种情况,我们介绍 one-hot 编码:

对于性别特征,有两种取值:女/男,我们用 10(二进制) 表示女,用 01(二进制)表示男

对于国籍特征,有四种取值,我们用 1000(二进制)表示中国,0100(二进制)表示美国,0010(二进制)表示俄罗斯,0001(二进制)表示英国

对于年龄特征,有三种取值,我们用 100(二进制)表示18岁,010(二进制)表示19岁,001(二进制)表示20岁

故对于20岁中国国籍的男生,我们可以表示为:[011000001],用下面这张图更能形象化理解:

image.png

3.Python 代码

下述代码在 Jupyter 上运行,没有安装过 Jupyter 的读者可以看博客:最详细的Anaconda Installers 的安装【numpy,jupyter】(图+文)

from sklearn import preprocessing  
enc = preprocessing.OneHotEncoder()         # 调用OneHotEncoder()
enc.fit([[0, 2, 2],
         [1, 1, 4],
         [1, 0, 1],
         [0, 1, 3]])  # 提供训练数据:4个数据,3种特征
array = enc.transform([[0,1,3]]).toarray()  # 测试,随便输入一个新数据去测试
array   # 独热编码结果:[[1., 0., 0., 1., 0., 0., 0., 1., 0.]] 


目录
相关文章
|
8月前
火山中文编程 -- HEX编码与BASE64编码
火山中文编程 -- HEX编码与BASE64编码
78 0
|
1月前
|
机器学习/深度学习 Serverless 索引
分类网络中one-hot编码的作用
在分类任务中,使用神经网络时,通常需要将类别标签转换为一种合适的输入格式。这时候,one-hot编码(one-hot encoding)是一种常见且有效的方法。one-hot编码将类别标签表示为向量形式,其中只有一个元素为1,其他元素为0。
46 2
|
3月前
|
机器学习/深度学习 存储 算法
One-Hot编码介绍
【10月更文挑战第2天】
|
8月前
|
机器学习/深度学习 自然语言处理
一文搞懂Transformer的位置编码
一文搞懂Transformer的位置编码
1951 2
|
8月前
|
机器学习/深度学习 数据采集 人工智能
一文搞懂 One-Hot Encoding(独热编码)
一文搞懂 One-Hot Encoding(独热编码)
791 0
|
8月前
|
机器学习/深度学习 算法
独热编码的两种实现形式
独热编码的两种实现形式
120 1
|
8月前
|
机器学习/深度学习 算法 Python
在Python中,独热编码(One-Hot Encoding)
在Python中,独热编码(One-Hot Encoding)
975 8
|
8月前
|
机器学习/深度学习 数据处理 索引
Python下数值型与字符型类别变量独热编码(One-hot Encoding)实现
Python下数值型与字符型类别变量独热编码(One-hot Encoding)实现
|
机器学习/深度学习 自然语言处理 算法
深度学习基础入门篇10:序列模型-词表示{One-Hot编码、Word Embedding、Word2Vec、词向量的一些有趣应用}
深度学习基础入门篇10:序列模型-词表示{One-Hot编码、Word Embedding、Word2Vec、词向量的一些有趣应用}
深度学习基础入门篇10:序列模型-词表示{One-Hot编码、Word Embedding、Word2Vec、词向量的一些有趣应用}
|
机器学习/深度学习 数据采集 Python
独热编码(One-Hot Encoding)和 LabelEncoder标签编码 区别 数据预处理:(机器学习) sklearn
独热编码(One-Hot Encoding)和 LabelEncoder标签编码 区别 数据预处理:(机器学习) sklearn
805 0
独热编码(One-Hot Encoding)和 LabelEncoder标签编码 区别 数据预处理:(机器学习) sklearn

热门文章

最新文章