Python下数值型与字符型类别变量独热编码(One-hot Encoding)实现

简介: Python下数值型与字符型类别变量独热编码(One-hot Encoding)实现


  在数据处理与分析领域,数值型与字符型类别变量的编码是不可或缺的预处理操作。本文基于Python下OneHotEncoderpd.get_dummies两种方法,对机器学习中最优的编码方法——独热编码加以实现。

1 OneHotEncoder

  首先导入必要的模块。

import pandas as pd
from sklearn.preprocessing import OneHotEncoder

  其中,OneHotEncoder是我们实现独热编码的关键模块。

  接下来,导入并显示数据前五行。

test_data_1=pd.read_csv('G:/CropYield/03_DL/00_Data/onehot_test.csv',names=['EVI0610','EVI0626','SoilType'],header=0)
test_data_1.head(5)

  关于这里导入数据代码的解释,大家可以查看博客1博客2,这里就不再赘述啦~

  数据前五行展示如下图。其中,前两列'EVI0610''EVI0626'为数值型连续变量,而'SoilType'为数值型类别变量。我们要做的,也就是将第三列'SoilType'进行独热编码。

  接下来,进行独热编码的配置。

ohe=OneHotEncoder(handle_unknown='ignore')
ohe.fit(test_data_1)

  在这里,第一行是对独热编码的配置,第二行则是对我们刚刚导入的数据进行独热编码处理。得到一个独热编码配置的输出结果。

  接下来,看看独热编码处理后,将我们的数据分成了哪些类别。

ohe.categories_

  得到结果如下图。

  可以发现,一共有三个array,为什么呢?仔细看可以发现,独热编码是将我们导入的三列数据全部都当作类别变量来处理了。之所以会这样,是因为我们在一开始没有表明哪一列是类别变量,需要进行独热编码;而哪一列不是类别变量,从而不需要进行独热编码。

  那么,我们如何实现上述需求,告诉程序我们要对哪一行进行独热编码呢?在老版本的sklearn中,我们可以借助categorical_features=[x]参数来实现这一功能,但是新版本sklearn取消了这一参数。那么此时,一方面,我们可以借助ColumnTransformer来实现这一过程,另一方面,我们可以直接对需要进行转换的列加以处理。后者相对较为容易理解,因此本文对后者进行讲解。

  我们将test_data_1中的'SoilType'列作为索引,从而仅仅对该列数据加以独热编码。

ohe_column=pd.DataFrame(ohe.fit_transform(test_data_1[['SoilType']]).toarray())
ohe_column.head(5)

  其中,[['SoilType']]表示仅仅对这一列进行处理。得到结果如下图。

  可以看到,原来的'SoilType'列现在成为了63列的编码列,那么这样的话,说明我们原先的'SoilType'应该一共是有63个不同的数值。是不是这个样子呢?我们来检查一下。

count=pd.DataFrame(test_data_1['SoilType'].value_counts())
print(count)

  得到结果如下。

  好的,没有问题:可以看到此结果共有63行,也就是'SoilType'列原本是有63个不同的值的,证明我们的独热编码没有出错。

  此时看一下我们的test_data_1数据目前长什么样子。

test_data_1.head(5)

  是的,我们仅仅对'SoilType'列做了处理,没有影响到整个初始数据。那么先将原本的'SoilType'列剔除掉。

test_data_1=test_data_1.drop(['SoilType'],axis=1)
test_data_1.head(5)

  再将经过独热编码处理后的63列加上。

test_data_1.join(ohe_column)

  大功告成!

  但是这里还有一个问题,我们经过独热编码所得的列名称始以数字来命名的,非常不方便。因此,有没有什么办法可以在独热编码进行的同时,自动对新生成的列加以重命名呢?

2 pd.get_dummies

  pd.get_dummies是一个最好的办法!其具体用法与上述OneHotEncoder类似,因此具体过程就不再赘述啦,大家看代码就可以明白。

  首先还是导入与上述内容中一致的初始数据。

test_data_2=pd.read_csv('G:/CropYield/03_DL/00_Data/onehot_test.csv',names=['EVI0610','EVI0626','SoilType'],header=0)
test_data_2.head(5)

  进行独热编码并看看结果。

test_data_2_ohe=pd.get_dummies(test_data_2,columns=['SoilType'])
test_data_2_ohe.head(5)

  最终结果中,列名称可以说是非常醒目,同时,共有65列数据,自动删除了原本的'SoilType'列,实现了“独热编码”“新列重命名”与“原始列删除”,可谓一举三得,简直是太方便啦~


相关文章
|
17天前
|
人工智能 Python
[oeasy]python039_for循环_循环遍历_循环变量
本文回顾了上一次的内容,介绍了小写和大写字母的序号范围,并通过 `range` 函数生成了 `for` 循环。重点讲解了 `range(start, stop)` 的使用方法,解释了为什么不会输出 `stop` 值,并通过示例展示了如何遍历小写和大写字母的序号。最后总结了 `range` 函数的结构和 `for` 循环的使用技巧。
29 4
|
1月前
|
Python
【10月更文挑战第5天】「Mac上学Python 8」基础篇2 - 变量深入详解
本篇将详细介绍Python中变量的使用方式和进阶操作,涵盖变量的输入与输出、变量的多重赋值、变量的内存地址管理以及变量的传递和交换等操作。通过本篇的学习,用户将对变量的使用有更深入的理解,并能灵活运用变量进行各种编程操作。
51 1
【10月更文挑战第5天】「Mac上学Python 8」基础篇2 - 变量深入详解
|
1月前
|
存储 编译器 Python
Python--变量、输出与输入
【10月更文挑战第5天】
|
1月前
|
测试技术 Python
Python MagicMock: Mock 变量的强大工具
Python MagicMock: Mock 变量的强大工具
|
1月前
|
存储 Java 编译器
Python学习三:学习python的 变量命名规则,算数、比较、逻辑、赋值运算符,输入与输出。
这篇文章是关于Python编程语言中变量命名规则、基本数据类型、算数运算符、比较运算符、逻辑运算符、赋值运算符以及格式化输出与输入的详细教程。
18 0
Python学习三:学习python的 变量命名规则,算数、比较、逻辑、赋值运算符,输入与输出。
|
1月前
|
存储 C语言 Python
解密 Python 的变量和对象,它们之间有什么区别和联系呢?
解密 Python 的变量和对象,它们之间有什么区别和联系呢?
21 2
|
1月前
|
存储 程序员 Python
Python编程入门:探索变量和数据类型
【10月更文挑战第8天】本文是针对初学者的Python编程入门指南,重点介绍Python中变量的定义和使用以及不同的数据类型。我们将通过实例来理解基本概念,并展示如何在Python程序中应用这些知识。文章旨在帮助初学者建立扎实的基础,使他们能够更自信地编写Python代码。
WK
|
1月前
|
Python
Python变量命名
在Python编程中,变量命名对代码的可读性和维护性至关重要。遵循PEP 8风格指南,变量名应使用小写字母和下划线分隔单词,保持简洁明了、描述性强,避免使用单字母、Python关键字和内置函数名,采用有意义的缩写,使用英文命名,保持命名风格一致,避免魔法数字,考虑上下文。正确示例:`user_name`、`order_quantity`;不正确示例:`n`、`q`。
WK
21 0
|
1月前
|
Python
深入了解Python中星号变量的特殊用法
深入了解Python中星号变量的特殊用法
17 0
|
1月前
|
存储 算法 API
Python学习五:函数、参数(必选、可选、可变)、变量、lambda表达式、内置函数总结、案例
这篇文章是关于Python函数、参数、变量、lambda表达式、内置函数的详细总结,包含了基础知识点和相关作业练习。
26 0