用Python来进行用户流失预测的实战

简介: Python

借用生存分析的方法来进行用户流失的预测,用到了Cox Proportional Hazards模型。

客户流失率很难预测。在你能做一些事情来阻止客户离开之前,你需要知道,谁将离开,什么时候离开,这将在多大程度上影响你的业务。在这篇文章中,我将解释使用生存分析来预测和预防流失的技术。

客户会不会流失
许多数据分析师试图用黑白分明的方式来模拟这个问题:客户流失vs客户没有流失。我们很容易用这种方式来看待这个问题,因为它是一种我们都知道的模型 —— 监督分类。

但是这样做忽略了客户流失预测问题的许多细微之处 —— 风险、时间线、客户离开的成本等等。

不管怎样,让我们从一个分类模型开始,看看我们最终的结果。

我们的数据集
我们使用的数据集是Kaggle Telco Churn dataset:https://www.kaggle.com/c/telco-churn/data,它包含超过7000个客户的记录,包括特征,比如客户的每月费用,成为客户的时长(几个月),是否有各种附加互联网服务等等。

以下是前5行:

image.png

首先你会注意到有很多类别变量为文本值(' Yes ', ' No ',等等),我们使用pd.get_dummies来修复这些:

dummies = pd.get_dummies( data[[ 'gender', 'SeniorCitizen', 'Partner', 'Dependents', 'tenure', 'PhoneService', 'MultipleLines', 'InternetService', 'OnlineSecurity', 'OnlineBackup', 'DeviceProtection', 'TechSupport', 'StreamingTV', 'StreamingMovies', 'Contract', 'PaperlessBilling', 'PaymentMethod', 'Churn' ]]) data = dummies.join(data[['MonthlyCharges', 'TotalCharges']])

如果你按照下面的步骤去做,你还需要修复total charge列中的一些缺失值,这些值使整列变成了文本而不是数字:

data['TotalCharges'] = data[['TotalCharges']].replace([' '], '0')data['TotalCharges'] = pd.to_numeric(data['TotalCharges'])

现在我们有了一个可用的数据格式,我们把它可视化一下:

from matplotlib import pyplot as plt plt.scatter( data['tenure'], data['MonthlyCharges'], c=data['Churn_Yes']) plt.xlabel('Customer Tenure (Months)') plt.ylabel('Monthly Charges')

image.png

很难从这张图中得出任何结论,这个图将客户的tenure(我们正在努力改进的东西)与他们的月费进行了比较。我们继续去训练一个逻辑回归模型,看看我们是否可以使用这些虚拟的特征来预测客户的流失。

相关文章
|
14天前
|
数据采集 机器学习/深度学习 人工智能
Python编程入门:从基础到实战
【10月更文挑战第36天】本文将带你走进Python的世界,从基础语法出发,逐步深入到实际项目应用。我们将一起探索Python的简洁与强大,通过实例学习如何运用Python解决问题。无论你是编程新手还是希望扩展技能的老手,这篇文章都将为你提供有价值的指导和灵感。让我们一起开启Python编程之旅,用代码书写想法,创造可能。
|
16天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
51 4
|
15天前
|
机器学习/深度学习 数据可视化 数据处理
Python数据科学:从基础到实战
Python数据科学:从基础到实战
25 1
|
16天前
|
机器学习/深度学习 JSON API
Python编程实战:构建一个简单的天气预报应用
Python编程实战:构建一个简单的天气预报应用
33 1
|
19天前
|
前端开发 API 开发者
Python Web开发者必看!AJAX、Fetch API实战技巧,让前后端交互如丝般顺滑!
在Web开发中,前后端的高效交互是提升用户体验的关键。本文通过一个基于Flask框架的博客系统实战案例,详细介绍了如何使用AJAX和Fetch API实现不刷新页面查看评论的功能。从后端路由设置到前端请求处理,全面展示了这两种技术的应用技巧,帮助Python Web开发者提升项目质量和开发效率。
33 1
|
19天前
|
缓存 测试技术 Apache
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
35 1
|
21天前
|
Linux 开发者 iOS开发
Python系统调用实战:如何在不同操作系统间游刃有余🐟
本文介绍了 Python 在跨平台开发中的强大能力,通过实际例子展示了如何使用 `os` 和 `pathlib` 模块处理文件系统操作,`subprocess` 模块执行外部命令,以及 `tkinter` 创建跨平台的图形用户界面。这些工具和模块帮助开发者轻松应对不同操作系统间的差异,专注于业务逻辑。
34 2
|
11天前
|
数据采集 存储 数据处理
探索Python中的异步编程:从基础到实战
【10月更文挑战第39天】在编程世界中,时间就是效率的代名词。Python的异步编程特性,如同给程序穿上了一双翅膀,让它们在执行任务时飞得更高、更快。本文将带你领略Python异步编程的魅力,从理解其背后的原理到掌握实际应用的技巧,我们不仅会讨论理论基础,还会通过实际代码示例,展示如何利用这些知识来提升你的程序性能。准备好让你的Python代码“起飞”了吗?让我们开始这场异步编程的旅程!
26 0
|
15天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
20天前
|
开发者 Python
探索Python中的装饰器:从入门到实战
【10月更文挑战第30天】本文将深入浅出地介绍Python中一个强大而有趣的特性——装饰器。我们将通过实际代码示例,一步步揭示装饰器如何简化代码、增强函数功能并保持代码的可读性。无论你是初学者还是有一定经验的开发者,这篇文章都将为你打开一扇通往更高效编程的大门。
下一篇
无影云桌面