暂时未有相关云产品技术能力~
暂无个人介绍
在车道线检测中,我们使用的是HSL颜色空间,其中H表示色相,即颜色,S表示饱和度,即颜色的纯度,L表示颜色的明亮程度。
标定的图片需要使用棋盘格数据在不同位置、不同角度、不同姿态下拍摄的图片,最少需要3张,当然多多益善,通常是10-20张。该项目中我们使用了20张图片
【Pytorch神经网络基础理论篇】 02 pytorch环境的安装
无人驾驶出现一次的问题会导致严重的后果,因此无人驾驶在错误率上特别重视,我们不会深入讲解这里,因此在无人驾驶中我们会对很多模型做一个预测,然后进行一种投票,再辅助一系列的传感器进行纠正,降低错误率,提高精度。
该方法介于传统标定法和自标定法之间,既克服了传统标定法需要的高精度三维标定物的缺点,又解决了自标定法鲁棒性差的难题。标定过程不需要特殊的标定物,只需使用一张打印出来的棋盘格,并从不同方向拍摄几组图片即可,不仅实用灵活方便,而且精度很高,鲁棒性好。因此很快被全世界广泛采用,极大的促进了三维计算机视觉从实验室走向真实世界的进程。
我们所处的世界是三维的,而照片是二维的,我们可以把相机认为是一个函数,输入量是一个场景,输出量是一幅灰度图。这个从三维到二维的过程的函数是不可逆的。
汽车的日益普及在给人们带来极大便利的同时,也导致了拥堵的交通路况,以及更为频发的交通事故。而自动驾驶技术的出现可以有效的缓解了此类问题,减少交通事故,提升出行效率。
字符串是 Python 中最常用的数据类型。我们一般使用引号来创建字符串。创建字符串很简单,只要为变量分配一个值即可。
智慧交通day02-车流量检测实现14:代码汇总+问题修正
虚拟线圈车辆计数法的原理是在采集到的交通流视频中,在需要进行车辆计数的道路或路段上设置一条或一条以上的检测线对通过车辆进行检测,从而完成计数工作。检测线的设置原则一般是在检测车道上设置一条垂直于车道线
代码编写完毕之后 发现 i[0]的数值无法正确获取,仔细寻找之后发现cv2.dnn.readNetFromDarknet()要求在python2环境下运行
在这里我们进行的目标检测是基于OPenCV的利用yoloV3进行目标检测,不涉及yoloV3的模型结构、理论及训练过程,只是利用训练好的模型进行目标检测
YOLOv3是YOLO (You Only Look Once)系列目标检测算法中的第三版,相比之前的算法,尤其是针对小目标,精度有显著提升。
该方法实现了SORT算法,输入是当前帧中所有物体的检测框的集合,包括目标的score,输出是当前帧标的跟踪框集合,包括目标的跟踪的id要求是即使检测框为空,也必须对每一帧调用此方法,返回一个类似的输出数组,最后一列是目标对像的id。
SORT核心是卡尔曼滤波和匈牙利匹配两个算法。流程图如下所示,可以看到整体可以拆分为两个部分,分别是匹配过程和卡尔曼预测加更新过程,都用灰色框标出来了。
智慧交通day02-车流量检测实现08:目标跟踪中的数据关联(将检测框bbox与卡尔曼滤波器的跟踪框进行关联匹配)
有一种很特别的图,就做二分图,那什么是二分图呢?就是能分成两组,U,V。其中,U上的点不能相互连通,只能连去V中的点,同理,V中的点不能相互连通,只能连去U中的点。这样,就叫做二分图。
在这里我们主要完成卡尔曼滤波器进行跟踪的相关内容的实现。
智慧交通day02-车流量检测实现05:小车匀加速案例
智慧交通day02-车流量检测实现05:小车匀速案例
FilterPy是一个实现了各种滤波器的Python模块,它实现著名的卡尔曼滤波和粒子滤波器。我们可以直接调用该库完成卡尔曼滤波器实现。
关掉win10的代理软件, 没有效果, 想起来代理软件会自动更改ie的代理设置
卡尔曼滤波(Kalman)无论是在单目标还是多目标领域都是很常用的一种算法,我们将卡尔曼滤波看做一种运动模型,用来对目标的位置进行预测,并且利用预测结果对跟踪的目标进行修正,属于自动控制理论中的一种方法。
IOU是交并比(Intersection-over-Union)是目标检测中使用的一个概念是产生的候选框
★Anaconda中创建、切换、删除虚拟环境(指定仓库)
PackagesNotFoundError: The following packages are not available from current channels:
报错ValueError: check_hostname requires server_hostname通常是因为版本冲突等原因,查遍网上众多大佬总结的经验后,最终发现是由网络代理导致的问题,即我们通常说的vpn问题。
多目标跟踪,即MOT(Multi-Object Tracking),也就是在一段视频中同时跟踪多个目标。MOT主要应用在安防监控和自动驾驶等领域中。
随着城市交通量的迅猛增加,车流量统计已成为智能交通系统中一项关键技术和热门研究方向。高效而精确的车流量检测可以交通管理者和决策者,以及驾驶员提供数据支撑,从而为交通调度,降低拥堵情况的发生,提高道路利用率有非常重要的意义。
使用方便。DNN模块提供了内建的CPU和GPU加速,无需依赖第三方库,若项目中之前使用了OpenCV,那么通过DNN模块可以很方便的为原项目添加深度学习的能力。
imutils是在OPenCV基础上的一个封装,达到更为简结的调用OPenCV接口的目的,它可以轻松的实现图像的平移,旋转,缩放,骨架化等一系列的操作。
numba是一个用于编译Python数组和数值计算函数的编译器,这个编译器能够大幅提高直接使用Python编写的函数的运算速度。
汽车的日益普及在给人们带来极大便利的同时,也导致了拥堵的交通路况,以及更为频发的交通事故。智能交通技术已成为推动现代技术交通技术发展的重要力量,智能交通不仅能够提供实时的交通路况信息,帮助交通管理者规划管理策略,而且还能优化出行者的出行策略。还可以减轻交通道路的堵塞情况,降低交通事故的发生概率,提高道路运行的安全系数。
前面的课程中,我们已经使用计算图的方式介绍了逻辑回归梯度下降算法的正向传播和反向传播两个过程。如下图所示。神经网络的结构与逻辑回归类似,只是神经网络的层数比逻辑回归多一层,多出来的中间那层称为隐藏层/中间层。
向量化(Vectorization)就是利用矩阵运算的思想,大大提高运算速度。例如下面所示在Python中使用向量化要比使用循环计算速度快得多。
在cousera的这一系列也叫做专项课程中,在第一门课中(神经网络和深度学习),你将学习神经网络的基础,你将学习神经网络和深度学习,这门课将持续四周,专项课程中的每门课将持续2至4周。
三巨头从机器学习谈起,指出传统机器学习的不足,总览深度学习理论、模型,给出了深度学习的发展历史,以及DL中最重要的算法和理论。
卷积(convolution)后,C(Channels)变,W(width)和H(Height)可变可不变,取决于是否padding。subsampling(或pooling)后,C不变,W和H变。
从输入输出的张量的shape角度来理解,相当于一个输入为[batch_size, in_features]的张量变换成了[batch_size, out_features]的输出张量。
多分类问题在最后的输出层采用的Softmax Layer,其具有两个特点:1.每个输出的值都是在(0,1);2.所有值加起来和为1.
下图这个预测一个人在一年之后得糖尿病的概率的例子,这个时候我们的输入将会有很多的指标。你可以把它看成是我们体检的各种值。最后一排的外代表了他是否会得糖尿病。
【Pytorch神经网络实战案例】05 使用Pytorch完成Logistic分类
【Pytorch神经网络实战案例】04 使用Pytorch实现线性回归
反向传播+代码实现
通过这些图形,我希望你能更好地理解这些代价函数J所表达的值是什么样的,它们对应的假设是什么样的,以及什么样的假设对应的点,更接近于代价函数的最小值。
分析到这儿就明白了。input tensor虽然格式也是CHW, 但它还有一个batch维度,所以报错。
这是一个SSL证书验证错误,当请求一个https站点,但是证书验证错误时,就会报这样的错误。
原因分析:Image调用顺序出错,因为第一行的from PIL import Image与第二行tkinter import *冲突,tkinter中也含有Image类,所以你使用的是tkinter.Image
解决方案:【要和工程目录对应!写全日志地址】
首先检查环境导入是否有问题,工具栏file–settings–project–project interpreter,在这里添加配置好的conda环境,注意添加时要选中对应的conda environment