智慧交通day02-车流量检测实现13:基于虚拟线圈法的车辆统计+视频中的车流量统计原理解析

简介: 虚拟线圈车辆计数法的原理是在采集到的交通流视频中,在需要进行车辆计数的道路或路段上设置一条或一条以上的检测线对通过车辆进行检测,从而完成计数工作。检测线的设置原则一般是在检测车道上设置一条垂直于车道线

1.基于虚拟线圈法的车辆统计


基于虚拟线圈的车流量统计算法原理与交通道路上的常见的传统的物理线圈类似,由于物理线圈需要埋设在路面之下,因此会有安装、维护费用高,造成路面破坏等问题,而采用基于视频的虚拟线圈的车辆计数方法完全避免了以上问题,且可以针对多个感兴趣区域进行检测。


虚拟线圈车辆计数法的原理是在采集到的交通流视频中,在需要进行车辆计数的道路或路段上设置一条或一条以上的检测线对通过车辆进行检测,从而完成计数工作。检测线的设置原则一般是在检测车道上设置一条垂直于车道线,居中的虚拟线段,通过判断其与通过车辆的相对位置的变化,完成车流量统计的工作。如下图所示,绿色的线就是虚拟检测线:


93f7e19f586448a6854047f015adf120.png


在该项目中我们进行检测的方法是,计算前后两帧图像的车辆检测框的中心点连线,若该连线与检测线相交,则计数加一,否则计数不变。


那怎么判断两条线段是否相交呢?


假设有两条线段AB,CD,若AB,CD相交,我们可以确定:


1.线段AB与CD所在的直线相交,即点A和点B分别在直线CD的两边;


2.线段CD与AB所在的直线相交,即点C和点D分别在直线AB的两边;


上面两个条件同时满足是两线段相交的充要条件,所以我们只需要证明点A和点B分别在直线CD的两边,点C和点D分别在直线AB的两边,这样便可以证明线段AB与CD相交了。


1a2ca0071ee04c60b90b37acf4ac27e1.png


在上图中,线段AB与线段CD相交,于是我们可以得到两个向量AC,AD,C和D分别在AB的两边,向量AC在向量AB的逆时针方向,AB×AC > 0;向量AD在向量AB的顺时针方向,AB×AD < 0,两叉乘结果异号。


这样,方法就出来了:如果线段CD的两个端点C和D,与另一条线段的一个端点(A或B,只能是其中一个)连成的向量,与向量AB做叉乘,若结果异号,表示C和D分别在直线AB的两边,若结果同号,则表示CD两点都在AB的一边,则肯定不相交。


所以我们利用叉乘的方法来判断车辆是否经过检测线。


2.基于虚拟线圈法的实现


实现车流量检测的代码如下:


1.检测AB和CD两条直线是否相交


# 检测AB和CD两条直线是否相交
def intersect(A, B, C, D):
    return ccw(A, C, D) != ccw(B, C, D) and ccw(A, B, C) != ccw(A, B, D)
# 计算有A,B,C三点构成的向量CA,BA之间的关系,
def ccw(A, B, C):
    return (C[1] - A[1]) * (B[0] - A[0]) > (B[1] - A[1]) * (C[0] - A[0])


1.遍历跟踪框判断其与检测线是否相交,并进行车辆计数


# 遍历跟踪框
for box in boxes:
    (x, y) = (int(box[0]), int(box[1]))  # 计算跟踪框的左上角坐标
    (w, h) = (int(box[2]), int(box[3]))  # 计算跟踪框的宽和高
    color = [int(c) for c in COLORS[indexIDs[i] % len(COLORS)]]  # 对方框的颜色进行设定
    cv2.rectangle(frame, (x, y), (w, h), color, 2)  # 将方框绘制在画面上
    """
    根据当前帧的检测结果,与上一帧检测的检测结过,进行虚拟线圈完成车辆计数:车流量统计
    """
    if indexIDs[i] in previous:
        previous_box = previous[indexIDs[i]]  # 获取上一帧识别的目标框
        (x2, y2) = (int(previous_box[0]), int(previous_box[1]))  # 获取上一帧画面追踪框的左上角坐标
        (w2, h2) = (int(previous_box[2]), int(previous_box[3]))  # 获取上一帧画面追踪框的宽和高
        p0 = (int(x + (w - x) / 2), int(y + (h - y) / 2))  # 获取当前帧检测框的中心点
        p1 = (int(x2 + (w2 - x2) / 2), int(y2 + (h2 - y2) / 2))  # 获取上一帧检测框的中心点
        cv2.line(frame, p0, p1, color, 3)  # 将前后两帧图像的检测结果中心连接起来
        """
                进行碰撞检测-前后两帧检测框中心点的连线穿过基准线,则进行计数
                """
        if intersect(p0, p1, line[0], line[1]):
            # 总计数加1
            counter += 1
            # 判断行进的方向
            if y2 < y:
                counter_down += 1  # 逆向行驶+1
            else:
                counter_up += 1  # 正向行驶+1


总结


1.基于虚拟线圈的目标检测,是设置一个垂直于车道的检测线,判断跟踪车辆与检测线之间的关系,完成车辆计数


2.利用叉乘的方法来检验车辆是否与检测线相交


前面我们已经完成了视频中车辆的检测功能,下面我们对车辆进行跟踪,并将跟踪结果绘制在视频中。


2.视频中的车流量统计


主要分为以下步骤:


  • 对目标进行追踪
  • 绘制车辆计数结果
  • 将检测结果绘制在视频中并进行保存


1.对目标进行追踪


    # yolo中检测结果为0时,传入跟踪器中会出现错误,在这里判断下,未检测到目标时不进行目标追踪
    if np.size(dets) == 0:
        continue
    else:
        tracks = tracker.update(dets)  # 将检测结果传入跟踪器中,返回当前画面中跟踪成功的目标,包含五个信息:目标框的左上角和右下角横纵坐标,目标的置信度
    # 对跟踪器返回的结果进行处理
    boxes = []  # 存放tracks中的前四个值:目标框的左上角横纵坐标和右下角的横纵坐标
    indexIDs = []  # 存放tracks中的最后一个值:置信度,用来作为memory中跟踪框的Key
    previous = memory.copy()  # 用于存放上一帧的跟踪结果,用于碰撞检测
    memory = {} # 存放当前帧目标的跟踪结果,用于碰撞检测
    # 遍历跟踪结果,对参数进行更新
    for track in tracks:
        boxes.append([track[0], track[1], track[2], track[3]])  # 更新目标框坐标信息
        indexIDs.append(int(track[4]))  # 更新置信度信息
        memory[indexIDs[-1]] = boxes[-1]  # 将跟踪框以key为:置信度,value为:跟踪框坐标形式存入memory中


1.绘制车辆计数的相关信息


 cv2.line(frame, line[0], line[1], (0, 255, 0), 3)  # 根据设置的基准线将其绘制在画面上
    cv2.putText(frame, str(counter), (30, 80), cv2.FONT_HERSHEY_DUPLEX, 3.0, (255, 0, 0), 3)  # 绘制车辆的总计数
    cv2.putText(frame, str(counter_up), (130, 80), cv2.FONT_HERSHEY_DUPLEX, 3.0, (0, 255, 0), 3)  # 绘制车辆正向行驶的计数
    cv2.putText(frame, str(counter_down), (230, 80), cv2.FONT_HERSHEY_DUPLEX, 3.0, (0, 0, 255), 3)  # 绘制车辆逆向行驶的计数


1.将结果保存在视频中


# 未设置视频的编解码信息时,执行以下代码
    if writer is None:
        # 设置编码格式
        fourcc = cv2.VideoWriter_fourcc(*"mp4v")
        # 视频信息设置
        writer = cv2.VideoWriter("./output/output.mp4",
                                 fourcc,
                                 30,
                                 (frame.shape[1], frame.shape[0]),
                                 True)
    # 将处理后的帧写入到视频中
    writer.write(frame)
    # 显示当前帧的结果
    cv2.imshow("", frame)
    # 按下q键退出
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break


总结


1.对目标进行追踪


2.绘制车辆计数的相关信息


3.将结果保存在视频中

目录
相关文章
|
7月前
|
安全 算法 网络协议
解析:HTTPS通过SSL/TLS证书加密的原理与逻辑
HTTPS通过SSL/TLS证书加密,结合对称与非对称加密及数字证书验证实现安全通信。首先,服务器发送含公钥的数字证书,客户端验证其合法性后生成随机数并用公钥加密发送给服务器,双方据此生成相同的对称密钥。后续通信使用对称加密确保高效性和安全性。同时,数字证书验证服务器身份,防止中间人攻击;哈希算法和数字签名确保数据完整性,防止篡改。整个流程保障了身份认证、数据加密和完整性保护。
|
6月前
|
机器学习/深度学习 数据可视化 PyTorch
深入解析图神经网络注意力机制:数学原理与可视化实现
本文深入解析了图神经网络(GNNs)中自注意力机制的内部运作原理,通过可视化和数学推导揭示其工作机制。文章采用“位置-转移图”概念框架,并使用NumPy实现代码示例,逐步拆解自注意力层的计算过程。文中详细展示了从节点特征矩阵、邻接矩阵到生成注意力权重的具体步骤,并通过四个类(GAL1至GAL4)模拟了整个计算流程。最终,结合实际PyTorch Geometric库中的代码,对比分析了核心逻辑,为理解GNN自注意力机制提供了清晰的学习路径。
473 7
深入解析图神经网络注意力机制:数学原理与可视化实现
|
6月前
|
机器学习/深度学习 缓存 自然语言处理
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
Tiktokenizer 是一款现代分词工具,旨在高效、智能地将文本转换为机器可处理的离散单元(token)。它不仅超越了传统的空格分割和正则表达式匹配方法,还结合了上下文感知能力,适应复杂语言结构。Tiktokenizer 的核心特性包括自适应 token 分割、高效编码能力和出色的可扩展性,使其适用于从聊天机器人到大规模文本分析等多种应用场景。通过模块化设计,Tiktokenizer 确保了代码的可重用性和维护性,并在分词精度、处理效率和灵活性方面表现出色。此外,它支持多语言处理、表情符号识别和领域特定文本处理,能够应对各种复杂的文本输入需求。
794 6
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
|
7月前
|
机器学习/深度学习 算法 数据挖掘
解析静态代理IP改善游戏体验的原理
静态代理IP通过提高网络稳定性和降低延迟,优化游戏体验。具体表现在加快游戏网络速度、实时玩家数据分析、优化游戏设计、简化更新流程、维护网络稳定性、提高连接可靠性、支持地区特性及提升访问速度等方面,确保更流畅、高效的游戏体验。
184 22
解析静态代理IP改善游戏体验的原理
|
7月前
|
编解码 缓存 Prometheus
「ximagine」业余爱好者的非专业显示器测试流程规范,同时也是本账号输出内容的数据来源!如何测试显示器?荒岛整理总结出多种测试方法和注意事项,以及粗浅的原理解析!
本期内容为「ximagine」频道《显示器测试流程》的规范及标准,我们主要使用Calman、DisplayCAL、i1Profiler等软件及CA410、Spyder X、i1Pro 2等设备,是我们目前制作内容数据的重要来源,我们深知所做的仍是比较表面的活儿,和工程师、科研人员相比有着不小的差距,测试并不复杂,但是相当繁琐,收集整理测试无不花费大量时间精力,内容不完善或者有错误的地方,希望大佬指出我们好改进!
453 16
「ximagine」业余爱好者的非专业显示器测试流程规范,同时也是本账号输出内容的数据来源!如何测试显示器?荒岛整理总结出多种测试方法和注意事项,以及粗浅的原理解析!
|
6月前
|
传感器 人工智能 监控
反向寻车系统怎么做?基本原理与系统组成解析
本文通过反向寻车系统的核心组成部分与技术分析,阐述反向寻车系统的工作原理,适用于适用于商场停车场、医院停车场及火车站停车场等。如需获取智慧停车场反向寻车技术方案前往文章最下方获取,如有项目合作及技术交流欢迎私信作者。
436 2
|
6月前
|
JavaScript 算法 前端开发
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
7月前
|
Java 数据库 开发者
详细介绍SpringBoot启动流程及配置类解析原理
通过对 Spring Boot 启动流程及配置类解析原理的深入分析,我们可以看到 Spring Boot 在启动时的灵活性和可扩展性。理解这些机制不仅有助于开发者更好地使用 Spring Boot 进行应用开发,还能够在面对问题时,迅速定位和解决问题。希望本文能为您在 Spring Boot 开发过程中提供有效的指导和帮助。
724 12
|
7月前
|
开发框架 监控 JavaScript
解锁鸿蒙装饰器:应用、原理与优势全解析
ArkTS提供了多维度的状态管理机制。在UI开发框架中,与UI相关联的数据可以在组件内使用,也可以在不同组件层级间传递,比如父子组件之间、爷孙组件之间,还可以在应用全局范围内传递或跨设备传递。
158 2
|
6月前
|
缓存 监控 搜索推荐
【实战解析】smallredbook.item_get_video API:小红书视频数据获取与电商应用指南
本文介绍小红书官方API——`smallredbook.item_get_video`的功能与使用方法。该接口可获取笔记视频详情,包括无水印直链、封面图、时长、文本描述、标签及互动数据等,并支持电商场景分析。调用需提供`key`、`secret`和`num_iid`参数,返回字段涵盖视频链接、标题、标签及用户信息等。同时,文章提供了电商实战技巧,如竞品监控与个性化推荐,并列出合规注意事项及替代方案对比。最后解答了常见问题,如笔记ID获取与视频链接时效性等。

推荐镜像

更多
  • DNS