PyTorch的nn.Linear()详解

简介: 从输入输出的张量的shape角度来理解,相当于一个输入为[batch_size, in_features]的张量变换成了[batch_size, out_features]的输出张量。

1. nn.Linear()


  • nn.Linear():用于设置网络中的全连接层,需要注意的是全连接层的输入与输出都是二维张量


  • 一般形状为[batch_size, size],不同于卷积层要求输入输出是四维张量。其用法与形参说明如下:


49c52fa5a5cd2e32ec5cac2632df8b44.png


  • in_features指的是输入的二维张量的大小,即输入的[batch_size, size]中的size。


  • out_features指的是输出的二维张量的大小,即输出的二维张量的形状为[batch_size,output_size],当然,它也代表了该全连接层的神经元个数。


  • 从输入输出的张量的shape角度来理解,相当于一个输入为[batch_size, in_features]的张量变换成了[batch_size, out_features]的输出张量。


用法示例:


import torch as t
from torch import nn
from torch.nn import functional as F
# 假定输入的图像形状为[3,64,64]
x = t.randn(10, 3, 64, 64)      # 10张 3个channel 大小为64x64的图片
x = nn.Conv2d(3, 64, kernel_size=3, stride=3, padding=0)(x)
print(x.shape)
# 之前的特征图尺寸为多少,只要设置为(1,1),那么最终特征图大小都为(1,1) 
# x = F.adaptive_avg_pool2d(x, [1,1])    # [b, 64, h, w] => [b, 64, 1, 1]
# print(x.shape)
# 将四维张量转换为二维张量之后,才能作为全连接层的输入
x = x.view(x.size(0), -1)
print(x.shape)
# in_features由输入张量的形状决定,out_features则决定了输出张量的形状 
connected_layer = nn.Linear(in_features = 64*21*21, out_features = 10)
# 调用全连接层
output = connected_layer(x) 
print(output.shape)
torch.Size([10, 64, 21, 21])
torch.Size([10, 28224])
torch.Size([10, 10])


目录
相关文章
|
PyTorch 算法框架/工具
Pytorch学习笔记(六):view()和nn.Linear()函数详解
这篇博客文章详细介绍了PyTorch中的`view()`和`nn.Linear()`函数,包括它们的语法格式、参数解释和具体代码示例。`view()`函数用于调整张量的形状,而`nn.Linear()`则作为全连接层,用于固定输出通道数。
830 0
Pytorch学习笔记(六):view()和nn.Linear()函数详解
|
存储 PyTorch 算法框架/工具
【chat-gpt问答记录】关于pytorch中的线性层nn.Linear()
【chat-gpt问答记录】关于pytorch中的线性层nn.Linear()
432 0
|
PyTorch 算法框架/工具 数据格式
|
2月前
|
机器学习/深度学习 数据采集 人工智能
PyTorch学习实战:AI从数学基础到模型优化全流程精解
本文系统讲解人工智能、机器学习与深度学习的层级关系,涵盖PyTorch环境配置、张量操作、数据预处理、神经网络基础及模型训练全流程,结合数学原理与代码实践,深入浅出地介绍激活函数、反向传播等核心概念,助力快速入门深度学习。
179 1
|
6月前
|
机器学习/深度学习 PyTorch API
PyTorch量化感知训练技术:模型压缩与高精度边缘部署实践
本文深入探讨神经网络模型量化技术,重点讲解训练后量化(PTQ)与量化感知训练(QAT)两种主流方法。PTQ通过校准数据集确定量化参数,快速实现模型压缩,但精度损失较大;QAT在训练中引入伪量化操作,使模型适应低精度环境,显著提升量化后性能。文章结合PyTorch实现细节,介绍Eager模式、FX图模式及PyTorch 2导出量化等工具,并分享大语言模型Int4/Int8混合精度实践。最后总结量化最佳策略,包括逐通道量化、混合精度设置及目标硬件适配,助力高效部署深度学习模型。
942 21
PyTorch量化感知训练技术:模型压缩与高精度边缘部署实践
|
1月前
|
边缘计算 人工智能 PyTorch
130_知识蒸馏技术:温度参数与损失函数设计 - 教师-学生模型的优化策略与PyTorch实现
随着大型语言模型(LLM)的规模不断增长,部署这些模型面临着巨大的计算和资源挑战。以DeepSeek-R1为例,其671B参数的规模即使经过INT4量化后,仍需要至少6张高端GPU才能运行,这对于大多数中小型企业和研究机构来说成本过高。知识蒸馏作为一种有效的模型压缩技术,通过将大型教师模型的知识迁移到小型学生模型中,在显著降低模型复杂度的同时保留核心性能,成为解决这一问题的关键技术之一。
|
2月前
|
机器学习/深度学习 存储 PyTorch
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
Neural ODE将神经网络与微分方程结合,用连续思维建模数据演化,突破传统离散层的限制,实现自适应深度与高效连续学习。
138 3
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
|
8月前
|
机器学习/深度学习 JavaScript PyTorch
9个主流GAN损失函数的数学原理和Pytorch代码实现:从经典模型到现代变体
生成对抗网络(GAN)的训练效果高度依赖于损失函数的选择。本文介绍了经典GAN损失函数理论,并用PyTorch实现多种变体,包括原始GAN、LS-GAN、WGAN及WGAN-GP等。通过分析其原理与优劣,如LS-GAN提升训练稳定性、WGAN-GP改善图像质量,展示了不同场景下损失函数的设计思路。代码实现覆盖生成器与判别器的核心逻辑,为实际应用提供了重要参考。未来可探索组合优化与自适应设计以提升性能。
664 7
9个主流GAN损失函数的数学原理和Pytorch代码实现:从经典模型到现代变体
|
3月前
|
PyTorch 算法框架/工具 异构计算
PyTorch 2.0性能优化实战:4种常见代码错误严重拖慢模型
我们将深入探讨图中断(graph breaks)和多图问题对性能的负面影响,并分析PyTorch模型开发中应当避免的常见错误模式。
241 9
|
5月前
|
机器学习/深度学习 存储 PyTorch
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
本文通过使用 Kaggle 数据集训练情感分析模型的实例,详细演示了如何将 PyTorch 与 MLFlow 进行深度集成,实现完整的实验跟踪、模型记录和结果可复现性管理。文章将系统性地介绍训练代码的核心组件,展示指标和工件的记录方法,并提供 MLFlow UI 的详细界面截图。
247 2
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统

热门文章

最新文章

推荐镜像

更多