COCO转VOC代码:将coco格式的json文件转换为voc格式的xml文件

简介: COCO转VOC代码:将coco格式的json文件转换为voc格式的xml文件
from pycocotools.coco import COCO
import os
from lxml import etree, objectify
import shutil
from tqdm import tqdm
import sys
import argparse
# 将类别名字和id建立索引
def catid2name(coco):
    classes = dict()
    for cat in coco.dataset['categories']:
        classes[cat['id']] = cat['name']
    return classes
# 将标签信息写入xml
def save_anno_to_xml(filename, size, objs, save_path):
    E = objectify.ElementMaker(annotate=False)
    anno_tree = E.annotation(
        E.folder("DATA"),
        E.filename(filename),
        E.source(
            E.database("The VOC Database"),
            E.annotation("PASCAL VOC"),
            E.image("flickr")
        ),
        E.size(
            E.width(size['width']),
            E.height(size['height']),
            E.depth(size['depth'])
        ),
        E.segmented(0)
    )
    for obj in objs:
        E2 = objectify.ElementMaker(annotate=False)
        anno_tree2 = E2.object(
            E.name(obj[0]),
            E.pose("Unspecified"),
            E.truncated(0),
            E.difficult(0),
            E.bndbox(
                E.xmin(obj[1]),
                E.ymin(obj[2]),
                E.xmax(obj[3]),
                E.ymax(obj[4])
            )
        )
        anno_tree.append(anno_tree2)
    anno_path = os.path.join(save_path, filename[:-3] + "xml")
    etree.ElementTree(anno_tree).write(anno_path, pretty_print=True)
# 利用cocoAPI从json中加载信息
def load_coco(anno_file, xml_save_path):
    if os.path.exists(xml_save_path):
        shutil.rmtree(xml_save_path)
    os.makedirs(xml_save_path)
    coco = COCO(anno_file)
    classes = catid2name(coco)
    imgIds = coco.getImgIds()
    classesIds = coco.getCatIds()
    for imgId in tqdm(imgIds):
        size = {}
        img = coco.loadImgs(imgId)[0]
        filename = img['file_name']
        width = img['width']
        height = img['height']
        size['width'] = width
        size['height'] = height
        size['depth'] = 3
        annIds = coco.getAnnIds(imgIds=img['id'], iscrowd=None)
        anns = coco.loadAnns(annIds)
        objs = []
        for ann in anns:
            object_name = classes[ann['category_id']]
            # bbox:[x,y,w,h]
            bbox = list(map(int, ann['bbox']))
            xmin = bbox[0]
            ymin = bbox[1]
            xmax = bbox[0] + bbox[2]
            ymax = bbox[1] + bbox[3]
            obj = [object_name, xmin, ymin, xmax, ymax]
            objs.append(obj)
        save_anno_to_xml(filename, size, objs, xml_save_path)
def parseJsonFile(data_dir, xmls_save_path):
    assert os.path.exists(data_dir), "data dir:{} does not exits".format(data_dir)
    if os.path.isdir(data_dir):
        # 这里注意修改
        data_types = ['train', 'val']
        for data_type in data_types:
            ann_file = 'instances_{}.json'.format(data_type)
            xmls_save_path = os.path.join(xmls_save_path, data_type)
            load_coco(ann_file, xmls_save_path)
    elif os.path.isfile(data_dir):
        anno_file = data_dir
        load_coco(anno_file, xmls_save_path)
if __name__ == '__main__':
    """
    脚本说明:
        该脚本用于将coco格式的json文件转换为voc格式的xml文件
    参数说明:
        data_dir:json文件的路径
        xml_save_path:xml输出路径
    """
    parser = argparse.ArgumentParser()
    parser.add_argument('-d', '--data-dir', type=str, default='./Task/cocome/annotations/instance_train.json', help='json path')
    parser.add_argument('-s', '--save-path', type=str, default='./Task/voc', help='xml save path')
    opt = parser.parse_args()
    print(opt)
    if len(sys.argv) > 1:
        parseJsonFile(opt.data_dir, opt.save_path)
    else:
    # 这里修改 coco的训练集json地址
        data_dir = './Task/cocome/annotations/instance_train.json'
    # 这里改成VOC xml文件的保存路径
        xml_save_path = './Task/voc'
        parseJsonFile(data_dir=data_dir, xmls_save_path=xml_save_path)


https://zhuanlan.zhihu.com/p/461488682

目录
相关文章
|
4月前
|
JSON 前端开发 应用服务中间件
配置Nginx根据IP地址进行流量限制以及返回JSON格式数据的方案
最后,记得在任何生产环境部署之前,进行透彻测试以确保一切运转如预期。遵循这些战术,守卫你的网络城堡不再是难题。
217 3
|
6月前
|
XML JSON API
如何在 Postman 中上传文件和 JSON 数据
如果你想在 Postman 中同时上传文件和 JSON 数据,本文将带你一步一步地了解整个过程,包括最佳实践和技巧,让你的工作更轻松。
|
8月前
|
开发工具 git 索引
怎么取消对project.private.config.json这个文件的git记录
通过以上步骤,您可以成功取消对 `project.private.config.json`文件的Git记录。这样,文件将不会被包含在未来的提交中,同时仍保留在您的工作区中。
227 28
|
9月前
|
JSON 前端开发 搜索推荐
关于商品详情 API 接口 JSON 格式返回数据解析的示例
本文介绍商品详情API接口返回的JSON数据解析。最外层为`product`对象,包含商品基本信息(如id、name、price)、分类信息(category)、图片(images)、属性(attributes)、用户评价(reviews)、库存(stock)和卖家信息(seller)。每个字段详细描述了商品的不同方面,帮助开发者准确提取和展示数据。具体结构和字段含义需结合实际业务需求和API文档理解。
|
10月前
|
JSON 人工智能 算法
探索大型语言模型LLM推理全阶段的JSON格式输出限制方法
本篇文章详细讨论了如何确保大型语言模型(LLMs)输出结构化的JSON格式,这对于提高数据处理的自动化程度和系统的互操作性至关重要。
1298 48
|
11月前
|
JSON JavaScript Java
对比JSON和Hessian2的序列化格式
通过以上对比分析,希望能够帮助开发者在不同场景下选择最适合的序列化格式,提高系统的整体性能和可维护性。
352 3
|
11月前
|
JSON API 数据安全/隐私保护
拍立淘按图搜索API接口返回数据的JSON格式示例
拍立淘按图搜索API接口允许用户通过上传图片来搜索相似的商品,该接口返回的通常是一个JSON格式的响应,其中包含了与上传图片相似的商品信息。以下是一个基于淘宝平台的拍立淘按图搜索API接口返回数据的JSON格式示例,同时提供对其关键字段的解释
|
1月前
|
机器学习/深度学习 JSON 监控
淘宝拍立淘按图搜索与商品详情API的JSON数据返回详解
通过调用taobao.item.get接口,获取商品标题、价格、销量、SKU、图片、属性、促销信息等全量数据。
|
1月前
|
JSON 缓存 自然语言处理
多语言实时数据微店商品详情API:技术实现与JSON数据解析指南
通过以上技术实现与解析指南,开发者可高效构建支持多语言的实时商品详情系统,满足全球化电商场景需求。
|
10天前
|
JSON API 数据格式
淘宝拍立淘按图搜索API系列,json数据返回
淘宝拍立淘按图搜索API系列通过图像识别技术实现商品搜索功能,调用后返回的JSON数据包含商品标题、图片链接、价格、销量、相似度评分等核心字段,支持分页和详细商品信息展示。以下是该API接口返回的JSON数据示例及详细解析:

热门文章

最新文章