物联网边缘计算

首页 标签 物联网边缘计算
# 物联网边缘计算 #
关注
1299内容
2023年最先进的道路巡检系统,谁是Top 1?
在”十四五”的推动下,2023年越来越多的科技创新型企业陆续把目光放在道路巡检智能化上面,其中有6家科技型企业脱颖而出,究竟哪家企业的产品才是Top 1?
MEC|带你读《5G无线网络规划与设计》之六
在 5G 的服务化架构中,NF 既是服务的提供者,又是服务的使用者。任何NF 都可以提供一个或多个服务。5G 系统架构提供了对服务的使用者进行身份验证和对服务请求授权所必需的功能,并支持高效灵活的公开和使用服务。对于简单的服务或信息请求,可以使用请求-响应模型。对于长期存在的进程,5G架构还支持订阅-通知模型。
从中心走向边缘——深度解析云原生边缘计算落地痛点
边缘计算平台的建设,以 Kubernetes 为核心的云原生技术体系,无疑是当前最佳的选择与建设路径;但是云原生体系庞大,组件复杂,将体系下沉至边缘会面临很大的挑战与困难,同时充满巨大的机遇及想象空间。业务应用想要真正践行边缘的云原生体系,需要从理念、系统设计、架构设计等多方面来共同实现,才能充分发挥边缘的优势及价值。
边缘计算 | 在移动设备上部署深度学习模型的思路与注意点 ⛵
本文介绍AI模型适用于小型本地设备上的方法技术:压缩模型参数量,设计更小的模型结构,知识蒸馏,调整数据格式,数据复用等,并介绍移动小处理设备的类型、适用移动设备的模型框架等。
边缘云概述
边缘云是分布式云数据中心,位于网络边缘,提供低延迟、高带宽的实时服务。它减少数据传输时间,支持本地化处理,确保数据安全,并在无网络时仍能运作。应用于CDN、互动直播和本地服务,与云计算互补,共同优化数据处理。随着5G和IoT的发展,边缘云将在未来扮演关键角色。
【AI系统】推理引擎架构
本文详细介绍了推理引擎的基本概念、特点、技术挑战及架构设计。推理引擎作为 AI 系统中的关键组件,负责将训练好的模型部署到实际应用中,实现智能决策和自动化处理。文章首先概述了推理引擎的四大特点:轻量、通用、易用和高效,接着探讨了其面临的三大技术挑战:需求复杂性与程序大小的权衡、算力需求与资源碎片化的矛盾、执行效率与模型精度的双重要求。随后,文章深入分析了推理引擎的整体架构,包括优化阶段的模型转换工具、模型压缩、端侧学习等关键技术,以及运行阶段的调度层、执行层等核心组件。最后,通过具体的开发流程示例,展示了如何使用推理引擎进行模型的加载、配置、数据预处理、推理执行及结果后处理。
如何使用SASE快速构建零信任架构
企业构建零信任架构已经成为近年热门的话题之一。本质都是保护企业核心数据安全,防止未经合法授权的数据的访问行为。阿里云SASE依托于阿里云的网络组网优势,为用户提供一个稳定、高效的SD-WAN组网及接入能力,与此同时叠加安全能力。
免费试用