PyTorch

首页 标签 PyTorch
# PyTorch #
关注
4936内容
基于YOLOv8的人脸表情识别项目【完整源码数据集+PyQt5界面+完整训练流程+开箱即用】
本项目基于YOLOv8开发人脸表情识别系统,集成PyQt5图形界面,支持图片、文件夹、视频及摄像头等多种输入方式的表情检测。具备开箱即用的特性,包含完整源码、预训练模型权重与数据集,适合毕业设计、科研及行业应用。功能涵盖单张/批量图片检测、视频实时分析、摄像头流处理等,并可保存结果。项目附带详细训练与部署流程,助力快速构建情绪识别系统。
yolov5的完整部署(适合新人和懒人,一键安装)
这篇文章为新人和希望简化部署过程的用户介绍了如何一键安装和配置YOLOv5环境,包括安装Anaconda、设置镜像源、安装PyCharm、创建虚拟环境、下载YOLOv5项目、安装依赖以及在PyCharm中配置和运行项目。
VQ-VAE:矢量量化变分自编码器,离散化特征学习模型
VQ-VAE 是变分自编码器(VAE)的一种改进。这些模型可以用来学习有效的表示。本文将深入研究 VQ-VAE 之前,不过,在这之前我们先讨论一些概率基础和 VAE 架构。
|
10月前
| |
DeepSeek 背后的技术:GRPO,基于群组采样的高效大语言模型强化学习训练方法详解
强化学习(RL)是提升大型语言模型(LLM)推理能力的重要手段,尤其在复杂推理任务中表现突出。DeepSeek团队通过群组相对策略优化(GRPO)方法,在DeepSeek-Math和DeepSeek-R1模型中取得了突破性成果,显著增强了数学推理和问题解决能力。GRPO无需价值网络,采用群组采样和相对优势估计,有效解决了传统RL应用于语言模型时的挑战,提升了训练效率和稳定性。实际应用中,DeepSeek-Math和DeepSeek-R1分别在数学推理和复杂推理任务中展现了卓越性能。未来研究将聚焦于改进优势估计、自适应超参数调整及理论分析,进一步拓展语言模型的能力边界。
|
2月前
| |
使用TensorRT LLM构建和运行Qwen模型
本文档介绍如何在单GPU和单节点多GPU上使用TensorRT LLM构建和运行Qwen模型,涵盖模型转换、引擎构建、量化推理及LoRA微调等操作,并提供详细的代码示例与支持矩阵。
免费试用