PyTorch

首页 标签 PyTorch
# PyTorch #
关注
4892内容
|
3月前
|
nanoVLM: 简洁、轻量的纯 PyTorch 视觉-语言模型训练代码库
nanoVLM 是一个基于 PyTorch 的轻量级工具包,专为训练视觉语言模型(VLM)设计。它结构简洁、易于理解,适合初学者快速上手。支持在免费 Colab Notebook 上训练,结合视觉 Transformer 与语言模型,实现图像理解和文本生成。项目受 nanoGPT 启发,注重代码可读性与实现效率。
深入剖析Transformer架构中的多头注意力机制
多头注意力机制(Multi-Head Attention)是Transformer模型中的核心组件,通过并行运行多个独立的注意力机制,捕捉输入序列中不同子空间的语义关联。每个“头”独立处理Query、Key和Value矩阵,经过缩放点积注意力运算后,所有头的输出被拼接并通过线性层融合,最终生成更全面的表示。多头注意力不仅增强了模型对复杂依赖关系的理解,还在自然语言处理任务如机器翻译和阅读理解中表现出色。通过多头自注意力机制,模型在同一序列内部进行多角度的注意力计算,进一步提升了表达能力和泛化性能。
ComfyUI:搭积木一样构建专属于自己的AIGC工作流(保姆级教程)
通过本篇文章,你可以了解并实践通过【ComfyUI】构建自己的【文生图】和【文生动图】工作流。
|
5天前
|
近端策略优化算法PPO的核心概念和PyTorch实现详解
近端策略优化(PPO)是强化学习中的关键算法,因其在复杂任务中的稳定表现而广泛应用。本文详解PPO核心原理,并提供基于PyTorch的完整实现方案,涵盖环境交互、优势计算与策略更新裁剪机制。通过Lunar Lander环境演示训练流程,帮助读者掌握算法精髓。
|
11月前
|
yolov5的完整部署(适合新人和懒人,一键安装)
这篇文章为新人和希望简化部署过程的用户介绍了如何一键安装和配置YOLOv5环境,包括安装Anaconda、设置镜像源、安装PyCharm、创建虚拟环境、下载YOLOv5项目、安装依赖以及在PyCharm中配置和运行项目。
|
16天前
| |
近端策略优化算法PPO的核心概念和PyTorch实现详解
本文深入解析了近端策略优化(PPO)算法的核心原理,并基于PyTorch框架实现了完整的强化学习训练流程。通过Lunar Lander环境展示了算法的全过程,涵盖环境交互、优势函数计算、策略更新等关键模块。内容理论与实践结合,适合希望掌握PPO算法及其实现的读者。
免费试用