动手实践:从零开始训练AI模型的全面指南
【7月更文第14天】随着人工智能技术的飞速发展,训练AI模型已成为科研、工程乃至创业领域的热门技能。本文旨在为初学者提供一个清晰、实用的指南,带领大家从零开始,了解并实践如何训练一个人工智能模型。我们将以一个简单的线性回归任务为例,逐步深入,探讨数据预处理、模型构建、训练过程及评估方法,最后展示如何使用Python和深度学习库PyTorch实现这一过程。
【AI系统】昇腾推理引擎 MindIE
本文详细介绍华为昇腾推理引擎 MindIE,涵盖其基本介绍、关键功能特性及三大组件:MindIE-Service、MindIE-Torch 和 MindIE-RT。文章深入探讨了各组件在服务化部署、大模型推理和推理运行时方面的功能和应用场景,旨在帮助读者全面了解 MindIE 如何支持 AI 业务的高效运行和模型的快速部署。
TensorRT 模型加速——输入、输出、部署流程
本文首先简要介绍 Tensor RT 的输入、输出以及部署流程,了解 Tensor RT 在部署模型中起到的作用。然后介绍 Tensor RT 模型导入流程,针对不同的深度学习框架,使用不同的方法导入模型。