Apache Paimon统一大数据湖存储底座
Apache Paimon,始于Flink Table Store,发展为独立的Apache顶级项目,专注流式数据湖存储。它提供统一存储底座,支持流、批、OLAP,优化了CDC入湖、流式链路构建和极速OLAP查询。Paimon社区快速增长,集成Flink、Spark等计算引擎,阿里巴巴在内部广泛应用,旨在打造统一湖存储,打通Serverless Flink、MaxCompute等,欢迎大家扫码参与体验阿里云上的 Flink+Paimon 的流批一体服务。
ClickHouse 架构原理及核心特性详解
ClickHouse 是由 Yandex 开发的开源列式数据库,专为 OLAP 场景设计,支持高效的大数据分析。其核心特性包括列式存储、字段压缩、丰富的数据类型、向量化执行和分布式查询。ClickHouse 通过多种表引擎(如 MergeTree、ReplacingMergeTree、SummingMergeTree)优化了数据写入和查询性能,适用于电商数据分析、日志分析等场景。然而,它在事务处理、单条数据更新删除及内存占用方面存在不足。
细说数据仓库分层架构
【7月更文挑战第20天】数据仓库分层架构包括缓冲层、操作数据层、明细数据层、汇总数据层和数据集市层。
StarRocks 原理详解:探索高效 OLAP 的奥秘
StarRocks 是一款高性能分析型数据仓库,采用向量化、MPP架构、CBO等技术,实现多维、实时、高并发的数据分析。它支持从各类数据源高效导入数据,兼容MySQL协议,并具备水平扩展、高可用等特性,广泛应用于实时数仓、OLAP报表等场景。StarRocks 解决了传统数仓在查询性能、数据导入、扩展性和灵活性等方面的挑战,助力企业实现数据驱动的决策。其分布式架构和智能物化视图等功能显著提升了查询效率,适用于大数据生态中的各种复杂需求。
深入剖析 OALP 与 OLTP:概念、区别、技术、场景
本文深入剖析了OLTP(在线事务处理)与OLAP(在线分析处理)的概念、区别、技术及应用场景。OLTP专注于实时业务操作,确保数据一致性和高效性,适用于金融、电商等行业;OLAP则侧重于历史数据分析,支持复杂查询和多维分析,助力企业决策。两者在数据特点、系统设计、用户类型及数据库设计上存在显著差异。合理结合OLTP和OLAP,可提升企业的运营效率和决策水平。