并行计算

首页 标签 并行计算
# 并行计算 #
关注
5216内容
Qwen2大模型微调入门实战(完整代码)
该教程介绍了如何使用Qwen2,一个由阿里云通义实验室研发的开源大语言模型,进行指令微调以实现文本分类。微调是通过在(指令,输出)数据集上训练来改善LLMs理解人类指令的能力。教程中,使用Qwen2-1.5B-Instruct模型在zh_cls_fudan_news数据集上进行微调,并借助SwanLab进行监控和可视化。环境要求Python 3.8+和英伟达显卡。步骤包括安装所需库、准备数据、加载模型、配置训练可视化工具及运行完整代码。训练完成后,展示了一些示例以验证模型性能。相关资源链接也一并提供。
YOLO算法
YOLO(You Only Look Once)是一种实时目标检测算法,将目标检测视为回归问题,通过单个CNN模型预测边界框和类别。YOLOv1使用24个卷积层和2个全连接层,将输入图像划分为7x7网格,每个网格预测2个边界框。模型直接从448x448图像输出7x7x30的张量,每个单元负责检测中心在其内的目标。YOLO训练涉及构造训练样本和损失函数,常采用预训练的Backbone(如CSPDarknet53)和数据增强技术。YOLOv4是YOLO系列的改进版,包括SPP和PANet等结构,提升了精度和速度,使用IOU损失函数,并采用CutMix和马赛克数据增强。
EchoMimicV2:阿里推出的开源数字人项目,能生成完整数字人半身动画
EchoMimicV2是阿里蚂蚁集团推出的开源数字人项目,能够生成完整的数字人半身动画。该项目基于参考图片、音频剪辑和手部姿势序列,通过音频-姿势动态协调策略生成高质量动画视频,确保音频内容与半身动作的一致性。EchoMimicV2不仅支持中文和英文驱动,还简化了动画生成过程中的复杂条件,适用于虚拟主播、在线教育、娱乐和游戏等多个应用场景。
浅析GPU通信技术(上)-GPUDirect P2P
1. 背景 GPU在高性能计算和深度学习加速中扮演着非常重要的角色, GPU的强大的并行计算能力,大大提升了运算性能。随着运算数据量的不断攀升,GPU间需要大量的交换数据,GPU通信性能成为了非常重要的指标。
huggingface_hub.utils._validators.HFValidationError: Repo id must be in the form ‘repo_name‘ or ‘nam
这篇文章介绍了在使用HuggingFace模型库时遇到的`Repo id`格式错误问题,并提供了将相对路径改为正确的绝对路径的解决办法。
|
9月前
|
【AI系统】SIMD & SIMT 与芯片架构
本文深入解析了SIMD(单指令多数据)与SIMT(单指令多线程)的计算本质及其在AI芯片中的应用,特别是NVIDIA CUDA如何实现这两种计算模式。SIMD通过单指令对多个数据进行操作,提高数据并行处理能力;而SIMT则在GPU上实现了多线程并行,每个线程独立执行相同指令,增强了灵活性和性能。文章详细探讨了两者的硬件结构、编程模型及硬件执行模型的区别与联系,为理解现代AI计算架构提供了理论基础。
docker 获取Nvidia 镜像 | cuda |cudnn
本文分享如何使用docker获取Nvidia 镜像,包括cuda10、cuda11等不同版本,cudnn7、cudnn8等,快速搭建深度学习环境。
免费试用