决策智能

首页 标签 决策智能
# 决策智能 #
关注
2349内容
凸优化介绍
凸优化介绍。更多文章请关注我的微信公众号:Python学习杂记
如何在因果推断中更好地利用数据?
本报告从两个方面来介绍我们如何利用更多的数据来做好因果推断,一个是利用历史对照数据来显式缓解混淆偏差,另一个是多源数据融合下的因果推断。
ModelScope-Agent框架再升级!新增一键配置多人聊天,配套开源多智能体数据集和训练
ModelScope-Agent是魔搭社区推出的适配开源大语言模型(LLM)的AI Agent(智能体)开发框架,借助ModelScope-Agent,所有开发者都可基于开源 LLM 搭建属于自己的智能体应用。在最新升级完Assistant API和Tool APIs之后,我们又迎来了多智能体聊天室的升级,通过几分钟快速配置即可搭建一个全新的聊天室。
数字化与数智化的区别
数字化是将信息转化为数字格式的过程,侧重于数据的转换和流程优化,而数智化是在此基础上结合智能技术进行深入分析和决策,强调智能应用。两者都是数据驱动的,但数智化更注重智能决策和业务创新。从数字化到数智化,企业需克服战略、组织和技术的挑战,实现体制、资源、机制和能力的全面转型。低代码平台等工具可助力企业加速数字化进程。
AI Agent【项目实战】:MetaGPT遇上元编程,重塑复杂多智能体协作的边界
【7月更文挑战第4天】AI Agent【项目实战】:MetaGPT遇上元编程,重塑复杂多智能体协作的边界
智能时代的伦理困境:人工智能决策的透明度与责任归属
当AI技术逐渐渗透到我们生活的每一个角落,它带来的便利和效率提升是显而易见的。然而,随之而来的伦理挑战也不容忽视。本文将探讨AI在做出决策时面临的透明度问题,以及由此引发的责任归属难题。通过分析AI系统的工作原理、决策过程及其对个人和社会可能产生的影响,我们将提出一系列针对当前AI伦理困境的解决方案和建议,旨在促进AI技术的健康发展同时保护人类社会的基本伦理原则。
免费试用