【强化学习】常用算法之一 “Q-learning”
Q-learning算法是一种基于强化学习的无模型学习方法,通过学习到目标系统的Q值函数来解决智能体在给定环境下的最优决策策略问题。Q-learning算法是基于后验策略方法,即学习出目标系统的价值函数Q之后,通过使用某种策略来最大化该价值函数,称之为后验策略。Q-learning算法是偏差-方差权衡的算法,在偏差较高的情况下可以在基于模型的强化学习中找到一个接近最优策略的解决方案。同时它也具有较高的收敛速度和广泛的适用性,因为其只需要存储一个值函数,不需要存储模型。
简述AI漏洞修复研究现状及发展方向
鲁军磊先生的演讲聚焦AI在网络安全中的应用,特别是自动化漏洞修复。他讨论了大模型技术的最新进展,AI如何增强漏洞发现与修复,并介绍了AI智能体的三种协作模式。传统漏洞修复流程从手工审计到智能化挖掘逐步演进,而AI技术通过智能决策和自动化执行提高效率。未来趋势包括智能化防御、跨域协同、安全合规自动化、隐私保护强化和安全技能普及,以及可持续安全生态建设。AI正重塑网络安全领域,推动更高效、精准的防御策略。
探索量子计算:理解原理与未来应用
在这篇文章中,我们将探讨量子计算的基本原理,了解它与经典计算的区别,并深入研究其在未来可能的应用场景。通过对量子比特、量子纠缠和量子超越等概念的解释,我们希望为读者揭开量子计算这一前沿技术的神秘面纱。
仿生机器人:自然界灵感的工程应用
【10月更文挑战第14天】仿生机器人作为自然界灵感与工程技术的完美结合,正逐步改变着我们的生活和工作方式。通过深入了解其设计原理、关键技术、应用领域以及未来的发展趋势,我们可以更加清晰地看到仿生机器人在推动科技创新和社会发展中的重要作用。让我们共同期待仿生机器人在未来带来的更多惊喜和变革!