决策智能

首页 标签 决策智能
# 决策智能 #
关注
2078内容
|
6月前
|
探索量子计算:理解原理与未来应用
在这篇文章中,我们将探讨量子计算的基本原理,了解它与经典计算的区别,并深入研究其在未来可能的应用场景。通过对量子比特、量子纠缠和量子超越等概念的解释,我们希望为读者揭开量子计算这一前沿技术的神秘面纱。
|
4月前
|
"携手并进,共创未来:多角色Agent协同作战,如何以智能融合的力量高效征服复杂任务新挑战!"
【8月更文挑战第21天】多Agent系统集结多个智能体,通过角色分配、通信与冲突解决等机制高效协作,完成复杂任务。智能体根据各自能力和任务需求扮演不同角色,通过有效沟通及任务分解,实现资源优化配置与目标协同达成,展现出高灵活性与适应性。
|
2月前
|
量子计算与金融风险管理:提升市场预测能力
【10月更文挑战第8天】量子计算作为一种前沿技术,正在逐步改变金融风险管理的格局。通过利用其独特的计算能力和优化算法,量子计算可以显著提高市场预测的准确性和及时性,为金融机构提供更精准的风险管理工具。尽管目前仍面临一些挑战和限制,但随着技术的不断进步和完善,相信量子计算将在未来的金融风险管理领域发挥更加重要的作用。
多智能体微调实践:α-UMi 开源
近年来,为了加强大型语言模型(Large-Language Models, LLM)实时信息处理、解决专业问题的能力,催生了工具调用智能体(Tool Integrated Agent)概念
|
2月前
| |
来自: 数据库
SQL语句实现投影连接详解
在SQL中,投影(Projection)和连接(Join)是数据查询和处理中非常重要的两个操作
黑盒模型事后归因解析:SHAP 方法
近年来人工智能的浪潮越来越汹涌,以神经网络、集成模型为代表的机器学习模型在数据挖掘领域中发挥着不可替代的作用。在追求模型高精度的道路上,工业界和学术界也十分关注模型的可解释性,期待从复杂模型中得到更直观的理解。
告别 AI 模型黑盒:可解释机器学习研究报告
随着金融数据规模的日益增长与 AI 技术的发展,机器学习模型在金融银行业被广泛使用。高性能的机器学习模型虽然在预测能力上表现突出,但是因为模型过于复杂的结构而引发的黑盒问题,却不利于机器学习模型的大规模使用。无法解释的黑盒模型在使用过程中暴露出来的安全风险和不公正问题,使人们对黑盒模型的使用变得越来越谨慎。为了应对黑盒模型的不可解释的问题,科学家们提出了可解释机器学习的研究。可解释机器学习分为内在可解释模型的研究和模型的事后解析方法两大方向。
因果推断:效应估计的常用方法及工具变量讨论
日常工作中很多的策略/产品的效果是无法设计完美的随机实验的,要求我们从观察性数据中去(拟合随机试验)发现因果关系、测算因果效应。
免费试用