算法框架/工具

首页 标签 算法框架/工具
# 算法框架/工具 #
关注
10796内容
|
4月前
|
对chinese_llama_aplaca模型的训练过程和代码的详细解读
以上都是大体的训练过程和代码解读,具体的进阶内容,会涉及到模型的评估,超参数的选择,模型的调整等更复杂的主题,每个主题都能写一整篇文章去详细解释。
|
4月前
|
Transformer总结笔记
1、PyTorch中的基础运算 2、自注意力机制 3、多头注意力机制 4、带隐码的多头注意力机制 5、交叉注意力机制
|
4月前
| |
PyTorch量化感知训练技术:模型压缩与高精度边缘部署实践
本文深入探讨神经网络模型量化技术,重点讲解训练后量化(PTQ)与量化感知训练(QAT)两种主流方法。PTQ通过校准数据集确定量化参数,快速实现模型压缩,但精度损失较大;QAT在训练中引入伪量化操作,使模型适应低精度环境,显著提升量化后性能。文章结合PyTorch实现细节,介绍Eager模式、FX图模式及PyTorch 2导出量化等工具,并分享大语言模型Int4/Int8混合精度实践。最后总结量化最佳策略,包括逐通道量化、混合精度设置及目标硬件适配,助力高效部署深度学习模型。
|
4月前
|
DeepSeek 部署方式与技术实践
DeepSeek的部署灵活性使其在多个领域大放异彩,但需根据场景权衡性能、成本与安全性。随着工具生态的完善与行业方案的沉淀,2025年将成为AI大模型落地关键年。开发者应持续关注MoE、COT等技术创新,结合自身需求选择最优部署策略。
|
4月前
| |
PyTorchVideo实战:从零开始构建高效视频分类模型
本文详细介绍了基于PyTorchVideo和PyTorch Lightning构建视频分类模型的全流程。通过Kinetics数据集,利用3D ResNet-50实现高效动作识别。教程涵盖数据加载与增强、模型构建及训练流程,结合两大框架优势,简化开发复杂度并提升性能,为视频理解任务提供完整解决方案。
|
4月前
|
飞桨x昇腾生态适配方案:00_整体方案介绍
本文详细介绍PaddlePaddle与NPU的适配工作,涵盖训练与推理支持、性能优化及离线推理方案。PaddleCustomDevice作为适配层,支持主流模型(详见飞桨-昇腾模型列表),多数性能媲美V100,部分调优模型接近0.8*A800。硬件适配主要针对A2芯片,A1兼容但310系列建议离线推理。提供常用模型仓链接及整体方案导览,包括环境准备、算子适配、性能调优和Paddle转ONNX/OM等内容。
ACK AI Profiling:从黑箱到透明的问题剖析
本文从一个通用的客户问题出发,描述了一个问题如何从前置排查到使用AI Profiling进行详细的排查,最后到问题定位与解决、业务执行过程的分析,从而展现一个从黑箱到透明的精细化的剖析过程。
|
4月前
| |
Perforated Backpropagation:神经网络优化的创新技术及PyTorch使用指南
深度学习近年来在多个领域取得了显著进展,但其核心组件——人工神经元和反向传播算法自提出以来鲜有根本性突破。穿孔反向传播(Perforated Backpropagation)技术通过引入“树突”机制,模仿生物神经元的计算能力,实现了对传统神经元的增强。该技术利用基于协方差的损失函数训练树突节点,使其能够识别神经元分类中的异常模式,从而提升整体网络性能。实验表明,该方法不仅可提高模型精度(如BERT模型准确率提升3%-17%),还能实现高效模型压缩(参数减少44%而无性能损失)。这一革新为深度学习的基础构建模块带来了新的可能性,尤其适用于边缘设备和大规模模型优化场景。
免费试用