并行计算

首页 标签 并行计算
# 并行计算 #
关注
4992内容
|
2月前
|
什么是SSA模式,它的工作原理是什么
【9月更文挑战第1天】什么是SSA模式,它的工作原理是什么
|
2月前
|
开源代码大模型CodeFuse
蚂蚁集团在2023外滩大会上开源了自研代码生成模型CodeFuse,提供智能代码建议和实时支持,评测得分超越GPT-4和WizardCoder-34B。CodeFuse适用于开发助手、IDE插件等场景,现已在魔搭社区开放下载与体验,包括CodeFuse13B-4K和CodeFuse-CodeLlaMa34B-MFT两个版本,以及配套数据集CodeExercise-Python-27k和Evol-instruction-66k。
|
3月前
|
GPU加速TensorFlow模型训练:从环境配置到代码实践的全方位指南,助你大幅提升深度学习应用性能,让模型训练不再等待
【8月更文挑战第31天】本文以随笔形式探讨了如何在TensorFlow中利用GPU加速模型训练,并提供了详细的实践指南。从安装支持GPU的TensorFlow版本到配置NVIDIA CUDA及cuDNN库,再到构建CNN模型并使用MNIST数据集训练,全面展示了GPU加速的重要性与实现方法。通过对比CPU与GPU上的训练效果,突显了GPU在提升训练速度方面的显著优势。最后,还介绍了如何借助TensorBoard监控训练过程,以便进一步优化模型。
|
3月前
|
揭秘Rust并发奇技!线程与消息传递背后的秘密,让程序性能飙升的终极奥义!
【8月更文挑战第31天】Rust 以其安全性和高性能著称,其并发模型在现代软件开发中至关重要。通过 `std::thread` 模块,Rust 支持高效的线程管理和数据共享,同时确保内存和线程安全。本文探讨 Rust 的线程与消息传递机制,并通过示例代码展示其应用。例如,使用 `Mutex` 实现线程同步,通过通道(channel)实现线程间安全通信。Rust 的并发模型结合了线程和消息传递的优势,确保了高效且安全的并行执行,适用于高性能和高并发场景。
|
3月前
|
阿里云服务器付费模式:按量付费、包年包月和抢占式实例全解析
阿里云服务器提供包年包月、按量付费与抢占式实例三种付费模式。包年包月为预付费,适合长期稳定使用,价格更优惠并支持备案。按量付费则为后付费模式,按小时结算,适合短期或访问量波动大的场景,但不支持备案。抢占式实例基于按量付费,价格更低(最多节省90%),适用于无状态应用,如临时测试或可弹性伸缩的Web服务,但存在被系统释放的风险,同样不支持备案。根据具体需求选择合适的付费模式能够有效降低成本并提高效率。
NumPy 并行计算与分布式部署
【8月更文第30天】随着数据量的不断增长,传统的单机计算模型已经难以满足对大规模数据集处理的需求。并行和分布式计算成为了处理这些大数据集的关键技术。虽然 NumPy 本身并不直接支持并行计算,但可以通过结合其他库如 Numba 和 Dask 来实现高效的并行和分布式计算。
NumPy 性能优化:提升 Python 数值计算的速度
【8月更文第30天】Python 是一种广泛使用的编程语言,在科学计算领域尤其受欢迎。然而,由于 Python 的动态类型和解释执行机制,其在处理大规模数值数据时可能会显得相对较慢。为了克服这一限制,NumPy(Numerical Python)库提供了高性能的多维数组对象以及一系列用于操作这些数组的函数。本文将探讨如何利用 NumPy 来提高 Python 中数值运算的效率。
|
3月前
|
Java函数式编程:一场编程范式的革命,让你的代码焕发新生!
【8月更文挑战第30天】Java函数式编程是一种基于数学函数理论的编程范式,强调数据处理的不可变性和纯函数使用,通过将函数视为第一类对象,实现更简洁、易读的代码结构,在数据流处理与并行计算中尤为突出。与命令式编程关注执行步骤不同,函数式编程侧重描述计算目标而非具体操作流程,减少了状态变化,使代码更清晰易维护。在Java中,函数式编程通过降低副作用和状态依赖简化了复杂度,并提高了代码质量和测试性,尤其是在Java 8的Stream API中得到了充分体现,能够自动优化多核处理器上的并行处理性能。
免费试用