机器学习实战之AdaBoost元算法

简介:

今天学习的机器学习算法不是一个单独的算法,我们称之为元算法或集成算法(Ensemble)。其实就是对其他算法进行组合的一种方式。俗话说的好:“三个臭皮匠,赛过诸葛亮”。集成算法有多种形式:对同一数据集,使用多个算法,通过投票或者平均等方法获得最后的预测模型;同一算法在不同设置下的集成;同一算法在多个不同实例下的集成。本文着重讲解最后一种集成算法。

bagging

如果训练集有n个样本,我们随机抽取S次,每次有放回的获取m个样本,用某个单独的算法对S个数据集(每个数据集有m个样本)进行训练,这样就可以获得S个分类器。最后通过投票箱来获取最后的结果(少数服从多数的原则)。这就是bagging方法的核心思想,如图所示。

fb546af14f7f1c1d53663db684bc455e18b96281

bagging中有个常用的方法,叫随机森林(random forest),该算法基于决策树,不仅对数据随机化,也对特征随机化。

  • 数据的随机化:应用bootstrap方法有放回地随机抽取k个新的自助样本集。

  • 特征随机化:n个特征,每棵树随机选择m个特征划分数据集。

每棵树无限生长,最后依旧通过投票箱来获取最后的结果。

boosting

boosting方法在模型选择方面和bagging一样:选择单个机器学习算法。但boosting方法是先在原数据集中训练一个分类器,然后将前一个分类器没能完美分类的数据重新赋权重(weight),用新的权重数据再训练出一个分类器,以此循环,最终的分类结果由加权投票决定。 所以:boosting是串行算法(必须依赖上一个分类器),而bagging是并行算法(可以同时进行);boosting的分类器权重不同,bagging相同(下文中详细讲解)。

boosting也有很多版本,本文只讲解AdaBoost(自适应boosting)方法的原理和代码实践。 如图所示,为AdaBoost方法的原理示意图。

  • 首先,训练样本赋权重,构成向量D(初始值相等,如100个数据,那每个数据权重为1/100)。

  • 在该数据上训练一个弱分类器并计算错误率和该分类器的权重值(alpha)。

  • 基于该alpha值重新计算权重(分错的样本权重变大,分对的权重变小)。

  • 循环2,3步,但完成给定的迭代次数或者错误阈值时,停止循环。

  • 最终的分类结果由加权投票决定。

e4b34eea239d11c574db71f00fc8e82071807b17

alpha和D的计算见下图(来源于机器学习实战):

ce98e0ba0e695c68ef21ac0b427de7b68561197c

AdaBoost方法实践

数据来源

数据通过代码创建:


from numpy import *

def loadSimpData():

dataArr = array([[1., 2.1], [2., 1.1], [1.3, 1.], [1., 1.], [2., 1.]])

labelArr = [1.0, 1.0, -1.0, -1.0, 1.0]

return dataArr, labelArr

弱决策树

该数据有两个特征,我们只用一个特征进行分类(弱分类器),然后选择精度最高的分类器。


def stumpClassify(dataMatrix, dimen, threshVal, threshIneq):

retArray = ones((shape(dataMatrix)[0],1))

retArray[dataMatrix[:,dimen] <= threshVal] = -1.0

if threshIneq == 'lt': else:

def buildStump(dataArr, labelArr, D):

retArray[dataMatrix[:,dimen] > threshVal] = -1.0 return retArray

numSteps = 10.0

dataMat = mat(dataArr) labelMat = mat(labelArr).T m, n = shape(dataMat) bestStump = {}

rangeMin = dataMat[:, i].min()

bestClasEst = mat(zeros((m, 1))) minError = inf for i in range(n): rangeMax = dataMat[:, i].max()

threshVal = (rangeMin + float(j) * stepSize)

stepSize = (rangeMax-rangeMin)/numSteps for j in range(-1, int(numSteps)+1): for inequal in ['lt', 'gt']:

errArr[predictedVals == labelMat] = 0

predictedVals = stumpClassify(dataMat, i, threshVal, inequal) # print predictedVals errArr = mat(ones((m, 1))) weightedError = D.T*errArr

minError = weightedError

# print("split: dim %d, thresh %.2f, thresh ineqal: %s, the weighted error is %.3f" % (i, threshVal, inequal, weightedError)) if weightedError < minError: bestClasEst = predictedVals.copy() bestStump['dim'] = i bestStump['thresh'] = threshVal

return bestStump, minError, bestClasEst

bestStump['ineq'] = inequal

AdaBoost算法

该函数用于构造多棵树,并保存每棵树的信息。


def adaBoostTrainDS(dataArr,classLabels, numIt=40):

weakClassArr = [] m = shape(dataArr)[0]

aggClassEst = mat(zeros((m,1)))

D = mat(ones((m,1))/m) for i in range(numIt):

print('D:',D.T)

bestStump,error,classEst = buildStump(dataArr, classLabels, D)

weakClassArr.append(bestStump)

alpha = float(0.5*log((1.0-error)/max(error,1e-16))) bestStump['alpha'] = alpha print('classEst:',classEst.T)

aggClassEst += alpha*classEst

expon = multiply(-1*alpha*mat(classLabels).T,classEst) D = multiply(D, exp(expon)) D = D/D.sum() print('aggClassEst:',aggClassEst.T)

if errorRate == 0:break

aggErrors = multiply(sign(aggClassEst) != mat(classLabels).T, ones((m,1))) errorRate = aggErrors.sum()/m print('total error:',errorRate,'\n')

return weakClassArr

算法优缺点

  • 优点:精度高

  • 缺点:容易过拟合


原文发布时间为:2018-06-23
本文作者:罗罗攀
本文来自云栖社区合作伙伴“ Python爱好者社区”,了解相关信息可以关注“ Python爱好者社区”。
相关文章
|
1天前
|
机器学习/深度学习 人工智能 算法
【昆虫识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+机器学习+TensorFlow+ResNet50
昆虫识别系统,使用Python作为主要开发语言。通过TensorFlow搭建ResNet50卷积神经网络算法(CNN)模型。通过对10种常见的昆虫图片数据集('蜜蜂', '甲虫', '蝴蝶', '蝉', '蜻蜓', '蚱蜢', '蛾', '蝎子', '蜗牛', '蜘蛛')进行训练,得到一个识别精度较高的H5格式模型文件,然后使用Django搭建Web网页端可视化操作界面,实现用户上传一张昆虫图片识别其名称。
28 7
【昆虫识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+机器学习+TensorFlow+ResNet50
|
1天前
|
机器学习/深度学习 人工智能 算法
算法金 | 统计学的回归和机器学习中的回归有什么差别?
**摘要:** 统计学回归重在解释,使用线性模型分析小数据集,强调假设检验与解释性。机器学习回归目标预测,处理大数据集,模型复杂多样,关注泛化能力和预测误差。两者在假设、模型、数据量和评估标准上有显著差异,分别适用于解释性研究和预测任务。
17 8
算法金 | 统计学的回归和机器学习中的回归有什么差别?
|
2天前
|
机器学习/深度学习 人工智能 Dart
AI - 机器学习GBDT算法
梯度提升决策树(Gradient Boosting Decision Tree),是一种集成学习的算法,它通过构建多个决策树来逐步修正之前模型的错误,从而提升模型整体的预测性能。
|
3天前
|
机器学习/深度学习 算法
AdaBoost算法
**AdaBoost** 是一种 Boosting 算法,通过序列训练弱分类器并赋予错误分类样本更大权重,逐步构建强分类器。它使用指数损失函数,每次迭代时,弱分类器聚焦于前一轮分类错误的样本。最终,弱分类器的预测结果按其性能加权组合成强分类器。与 Bagging 相比,Boosting 是串行的,每个模型依赖前一个模型的输出,更重视错误样本。AdaBoost 的优点包括提高弱分类器性能、鲁棒性和灵活性,但对噪声敏感且训练时间可能较长。
|
3天前
|
机器学习/深度学习 算法 搜索推荐
机器学习聚类算法
聚类算法是无监督学习技术,用于发现数据集中的自然群体,如用户画像、广告推荐等。常见的聚类算法包括K-Means,它基于距离分配样本至簇,适合球形分布;层次聚类则通过合并或分裂形成簇,能发现任意形状的簇;DBSCAN依据密度来聚类,对噪声鲁棒。KMeans API中`sklearn.cluster.KMeans(n_clusters=8)`用于指定簇的数量。评估聚类效果可使用轮廓系数、SSE等指标,Elbow方法帮助选择合适的K值。
|
1天前
|
机器学习/深度学习 算法
基于鲸鱼优化的knn分类特征选择算法matlab仿真
**基于WOA的KNN特征选择算法摘要** 该研究提出了一种融合鲸鱼优化算法(WOA)与K近邻(KNN)分类器的特征选择方法,旨在提升KNN的分类精度。在MATLAB2022a中实现,WOA负责优化特征子集,通过模拟鲸鱼捕食行为的螺旋式和包围策略搜索最佳特征。KNN则用于评估特征子集的性能。算法流程包括WOA参数初始化、特征二进制编码、适应度函数定义(以分类准确率为基准)、WOA迭代搜索及最优解输出。该方法有效地结合了启发式搜索与机器学习,优化特征选择,提高分类性能。
|
2天前
|
机器学习/深度学习 算法 数据可视化
基于BP神经网络的64QAM解调算法matlab性能仿真
**算法预览图省略** MATLAB 2022A版中,运用BP神经网络进行64QAM解调。64QAM通过6比特映射至64复数符号,提高数据速率。BP网络作为非线性解调器,学习失真信号到比特的映射,对抗信道噪声和多径效应。网络在处理非线性失真和复杂情况时展现高适应性和鲁棒性。核心代码部分未显示。
|
4天前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
21 6
|
2天前
|
缓存 算法
基于机会网络编码(COPE)的卫星网络路由算法matlab仿真
**摘要:** 该程序实现了一个基于机会网络编码(COPE)的卫星网络路由算法,旨在提升无线网络的传输效率和吞吐量。在MATLAB2022a中测试,结果显示了不同数据流个数下的网络吞吐量。算法通过Dijkstra函数寻找路径,计算编码机会(Nab和Nx),并根据编码机会减少传输次数。当有编码机会时,中间节点执行编码和解码操作,优化传输路径。结果以图表形式展示,显示数据流与吞吐量的关系,并保存为`R0.mat`。COPE算法预测和利用编码机会,适应卫星网络的动态特性,提高数据传输的可靠性和效率。
|
4天前
|
算法 调度
基于变异混合蛙跳算法的车间调度最优化matlab仿真,可以任意调整工件数和机器数,输出甘特图
**摘要:** 实现变异混合蛙跳算法的MATLAB2022a版车间调度优化程序,支持动态调整工件和机器数,输出甘特图。核心算法结合SFLA与变异策略,解决Job-Shop Scheduling Problem,最小化总完成时间。SFLA模拟蛙群行为,分组进行局部搜索和全局信息交换。变异策略增强全局探索,避免局部最优。程序初始化随机解,按规则更新,经多次迭代和信息交换后终止。