【MATLAB】RLMD分解+FFT+HHT组合算法

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: 【MATLAB】RLMD分解+FFT+HHT组合算法


1 基本定义

RLMD分解+FFT+HHT组合算法是一种强大的分析方法,结合了局部均值分解(LMD)、快速傅里叶变换(FFT)和希尔伯特-黄变换(HHT)。

首先,使用LMD将原始信号分解成多个IMF(本征模态函数),然后对每个IMF进行FFT计算其频谱,最后使用HHT分析其时频特征。

这种组合方法可以综合利用三种方法的优点,对于处理非线性和非平稳信号具有较高的准确性和鲁棒性。其中,LMD是一种用于处理非线性和非平稳信号的自适应信号分解方法,通过在信号中加入白噪声,并多次进行经验模态分解,从而获得原信号的多种本征模态函数。这些IMF可以更好地捕捉到信号中的局部特征,特别是对于非线性、非平稳信号。FFT是一种高效的计算离散傅里叶变换(DFT)和其逆变换的算法,可以在短时间内计算出信号在频域上的表达,从而提供信号的频率特征。HHT是一种用于分析非线性和非平稳信号的数学工具,通过将信号分解成一系列固有模态函数(IMF),并计算每个IMF的瞬时频率,从而提供信号的时频特征。

这种组合方法在处理复杂的非线性、非平稳信号时具有独特的优势。首先,LMD能够自适应地将信号分解成多个本征模态函数,这些IMF可以更好地捕捉到信号中的局部特征,特别是对于非线性、非平稳信号。其次,FFT可以计算出每个IMF的频谱,提供信号的频率特征,这对于分析信号的周期性和频域特征非常重要。最后,HHT可以提供信号的时频特征,对于分析信号的瞬时频率和时变特性非常有用。

这种组合方法在许多领域都有广泛的应用,例如在机械故障诊断中,可以使用LMD将机器的振动信号分解成多个IMF,然后使用FFT计算每个IMF的频谱,最后使用HHT分析其时频特征,从而识别出机器的故障。此外,在语音信号处理、雷达信号处理、图像处理等领域也可以使用这种组合方法进行分析。

需要注意的是,这种组合方法也存在一些局限性。例如,LMD 和 HHT 都存在端点效应问题,即在进行信号分解和分析时,需要考虑信号的边界条件。此外,这种组合方法需要使用大量的计算资源,特别是在处理大规模数据时,需要进行多次 FFT 和 HHT 计算。因此,在实际应用中需要根据具体的问题和数据特点进行选择和优化。

此外,这种组合方法还具有很高的鲁棒性,即使在信号存在噪声或异常值的情况下,也能够提供相对准确的结果。这是因为它可以自适应地处理非线性、非平稳信号,并且通过FFT和HHT提供更全面的频率和时频特征,从而减少噪声和异常值对结果的影响。

在具体实现上,这种组合方法需要使用相关的数学库和工具软件,例如Python中的NumPy、SciPy和Matlab中的信号处理工具箱等。这些库和工具软件提供了各种函数和算法,可以方便地实现LMD、FFT和HHT等算法,并且提供了可视化界面和文档支持,方便用户进行学习和应用。

总之,RLMD分解+FFT+HHT组合算法是一种非常强大的分析方法,可以用于处理非线性和非平稳信号,提供全面的频率和时频特征,并且具有较高的准确性和鲁棒性。它在许多领域都有广泛的应用前景,需要根据具体的问题和数据特点进行选择和优化。

2 出图效果

附出图效果如下:

附视频教程操作:

3 代码获取

【MATLAB】RLMD分解+FFT+HHT组合算法

https://mbd.pub/o/bread/ZZeWkplp

【MATLAB】LMD分解+FFT+HHT组合算法

https://mbd.pub/o/bread/ZZeVmJpv

【MATLAB】VMD分解+FFT+HHT组合算法

https://mbd.pub/o/bread/ZZeUl5pp

【MATLAB】小波分解+FFT+HHT组合算法

https://mbd.pub/o/bread/ZZeUk59w

【MATLAB】ICEEMDAN+FFT+HHT 组合算法

https://mbd.pub/o/bread/ZZeTlp5s

【MATLAB】CEEMDAN+FFT+HHT组合算法

https://mbd.pub/o/bread/ZZacmZZp

【MATLAB】CEEMD+FFT+HHT组合算法

https://mbd.pub/o/bread/ZZackp1r

【MATLAB】EEMD+FFT+HHT 组合算法

https://mbd.pub/o/bread/ZZablpxr

【MATLAB】EMD+FFT+HHT组合算法

https://mbd.pub/o/bread/ZZablJxs

MATLAB 开源算法及绘图代码合集汇总一览

https://www.aliyundrive.com/s/9GrH3tvMhKf

提取码: f0w7

关于代码有任何疑问,均可关注公众号(Lwcah)后,获取 up 的个人【微信号】,添加微信号后可以一起探讨科研,写作,代码等诸多学术问题,我们一起进步~


目录
相关文章
|
12天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
145 80
|
5天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
8天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
4天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
9天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
3天前
|
算法 5G
基于MSWA相继加权平均的交通流量分配算法matlab仿真
本项目基于MSWA(Modified Successive Weighted Averaging)相继加权平均算法,对包含6个节点、11个路段和9个OD对的交通网络进行流量分配仿真。通过MATLAB2022A实现,核心代码展示了迭代过程及路径收敛曲线。MSWA算法在经典的SUE模型基础上改进,引入动态权重策略,提高分配结果的稳定性和收敛效率。该项目旨在预测和分析城市路网中的交通流量分布,达到用户均衡状态,确保没有出行者能通过改变路径减少个人旅行成本。仿真结果显示了27条无折返有效路径的流量分配情况。
|
17天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
2天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
2天前
|
算法
基于RRT优化算法的机械臂路径规划和避障matlab仿真
本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。
|
11天前
|
算法
基于EO平衡优化器算法的目标函数最优值求解matlab仿真
本程序基于进化优化(EO)中的平衡优化器算法,在MATLAB2022A上实现九个测试函数的最优值求解及优化收敛曲线仿真。平衡优化器通过模拟生态系统平衡机制,动态调整搜索参数,确保种群多样性与收敛性的平衡,高效搜索全局或近全局最优解。程序核心为平衡优化算法,结合粒子群优化思想,引入动态调整策略,促进快速探索与有效利用解空间。