开发者社区> 大数据与机器学习> 人工智能平台PAI

人工智能平台PAI

关注

人工智能平台 PAI(Platform for AI,原机器学习平台PAI)是面向开发者和企业的机器学习/深度学习工程平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务,内置140+种优化算法,具备丰富的行业场景插件,为用户提供低门槛、高性能的云原生AI工程化能力。

0
今日
3331
内容
27
活动
3793
关注
|
11月前
|
人工智能 自然语言处理 算法
|
置顶

阿里云PAI大模型评测最佳实践

在大模型时代,模型评测是衡量性能、精选和优化模型的关键环节,对加快AI创新和实践至关重要。PAI大模型评测平台支持多样化的评测场景,如不同基础模型、微调版本和量化版本的对比分析。本文为您介绍针对于不同用户群体及对应数据集类型,如何实现更全面准确且具有针对性的模型评测,从而在AI领域可以更好地取得成就。

42266 15
|
人工智能 算法 开发工具
|
置顶

通义千问1.5(Qwen1.5)大语言模型在PAI-QuickStart的微调与部署实践

Qwen1.5(通义千问1.5)是阿里云最近推出的开源大型语言模型系列。作为“通义千问”1.0系列的进阶版,该模型推出了多个规模,从0.5B到72B,满足不同的计算需求。此外,该系列模型还包括了Base和Chat等多个版本的开源模型,为全球的开发者社区提供了空前的便捷性。阿里云的人工智能平台PAI,作为一站式的机器学习和深度学习平台,对Qwen1.5模型系列提供了全面的技术支持。无论是开发者还是企业客户,都可以通过PAI-QuickStart轻松实现Qwen1.5系列模型的微调和快速部署。

178643 8
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
|

Cosmos on PAI系列一:PAI-Model Gallery云上一键部署NVIDIA Cosmos Reason-1

本篇文章介绍 Cosmos 最新世界基础模型 Cosmos Reason-1 如何在阿里云人工智能平台 PAI 上进行快速部署使用。

20 1
|
8天前
|
存储 JSON PyTorch
|

Multimodal LLM训练-模型文件\训练数据加载逻辑源码分析

Multimodal LLM训练-模型文件\训练数据加载逻辑源码分析

56 16
|
9天前
|
人工智能 自然语言处理 数据挖掘
|

云上玩转Qwen3系列之三:PAI-LangStudio x Hologres构建ChatBI数据分析Agent应用

PAI-LangStudio 和 Qwen3 构建基于 MCP 协议的 Hologres ChatBI 智能 Agent 应用,通过将 Agent、MCP Server 等技术和阿里最新的推理模型 Qwen3 编排在一个应用流中,为大模型提供了 MCP+OLAP 的智能数据分析能力,使用自然语言即可实现 OLAP 数据分析的查询效果,减少了幻觉。开发者可以基于该模板进行灵活扩展和二次开发,以满足特定场景的需求。

101 4
|
17天前
|
人工智能 JSON 算法
|

【解决方案】DistilQwen2.5-DS3-0324蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践

DistilQwen 系列是阿里云人工智能平台 PAI 推出的蒸馏语言模型系列,包括 DistilQwen2、DistilQwen2.5、DistilQwen2.5-R1 等。本文详细介绍DistilQwen2.5-DS3-0324蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践。

75 6
|
18天前
|
人工智能 自然语言处理 数据库
|

云上玩转Qwen3系列之二:PAI-LangStudio搭建联网搜索和RAG增强问答应用

本文详细介绍了如何使用 PAI-LangStudio 和 Qwen3 构建基于 RAG 和联网搜索 的 AI 智能问答应用。该应用通过将 RAG、web search 等技术和阿里最新的推理模型 Qwen3 编排在一个应用流中,为大模型提供了额外的联网搜索和特定领域知识库检索的能力,提升了智能回答的效果,减少了幻觉。开发者可以基于该模板进行灵活扩展和二次开发,以满足特定场景的需求。

84 4
|
21天前
|
缓存 并行计算 测试技术
|

阿里云PAI-全模态模型Qwen2.5-Omni-7B推理浅试

阿里云PAI-全模态模型Qwen2.5-Omni-7B推理浅试

157 11
|
23天前
|
PyTorch 调度 算法框架/工具
|

阿里云PAI-DLC任务Pytorch launch_agent Socket Timeout问题源码分析

DLC任务Pytorch launch_agent Socket Timeout问题源码分析与解决方案

72 18
|
24天前
|
并行计算 Python 容器
|

uv找不到Python头文件的解决方案

最近在微调LLM的时候,我发现使用uv构建的环境,有时候会找不到Python.h,导致一些库报错,如`fatal error: Python.h: No such file or directory`。通过设置`python-preference`可以解决。

119 35
|
25天前
|
人工智能 自然语言处理 运维
|

Qwen3 全尺寸模型支持通过阿里云PAI-ModelGallery 一键部署

Qwen3 是 Qwen 系列最新一代的大语言模型,提供了一系列密集(Dense)和混合专家(MOE)模型。目前,PAI 已经支持 Qwen3 全系列模型一键部署,用户可以通过 PAI-Model Gallery 快速开箱!

150 0
|
25天前
|
人工智能 运维 API
|

PAI-Model Gallery云上一键部署阶跃星辰新模型Step1X-Edit

4月27日,阶跃星辰正式发布并开源图像编辑大模型 Step1X-Edit,性能达到开源 SOTA。Step1X-Edit模型总参数量为19B,实现 MLLM 与 DiT 的深度融合,在编辑精度与图像保真度上实现大幅提升,具备语义精准解析、身份一致性保持、高精度区域级控制三项关键能力;支持文字替换、风格迁移等11 类高频图像编辑任务类型。在最新发布的图像编辑基准 GEdit-Bench 中,Step1X-Edit 在语义一致性、图像质量与综合得分三项指标上全面领先现有开源模型,比肩 GPT-4o 与 Gemin。PAI-ModelGallery 支持Step1X-Edit一键部署方案。

55 2
|
26天前
|
开发者
|

云上玩转DeepSeek系列之六:DeepSeek云端加速版发布,具备超高推理性能

作为国内首个千亿级开源 MoE 模型,DeepSeek-R1 凭借其卓越的代码生成与复杂推理能力,已成为开发者构建智能应用的首选。然而,原始模型在产业落地中面临严峻挑战,部署 671B 满血版模型不仅硬件门槛要求很高,同时吞吐效率和响应延迟也受到了制约。PAI 正式推出了优化版 DeepSeek-R1 模型 DeepSeek-R1-PAI-optimized,将大模型推理效率推向了 Next Level。

79 11
|
26天前
|
数据采集 人工智能 大数据
|

演讲实录:中小企业如何快速构建AI应用?

AI时代飞速发展,大模型和AI的应用创新不断涌现,面对百花齐放的AI模型,阿里云计算平台大数据AI解决方案总监魏博文分享如何通过阿里云提供的大数据AI一体化平台,解决企业开发难、部署繁、成本高等一系列问题,让中小企业快速搭建AI应用。

78 2
|
1月前
|
人工智能 边缘计算 前端开发
|

人工智能平台 PAI DistilQwen2.5-DS3-0324发布:知识蒸馏+快思考=更高效解决推理难题

DistilQwen 系列是阿里云人工智能平台 PAI 推出的蒸馏语言模型系列,包括DistilQwen2、DistilQwen2.5、DistilQwen2.5-R1 等。DistilQwen2.5-DS3-0324 系列模型是基于 DeepSeek-V3-0324 通过知识蒸馏技术并引入快思考策略构建,显著提升推理速度,使得在资源受限的设备和边缘计算场景中,模型能够高效执行复杂任务。实验显示,DistilQwen2.5-DS3-0324 系列中的模型在多个基准测试中表现突出,其32B模型效果接近参数量接近其10倍的闭源大模型。

245 56
|
1月前
|
Python 语音技术
|

paraformer问题

251 1
|
1月前
|
机器学习/深度学习 人工智能 JSON
|

【解决方案】DistilQwen2.5-R1蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践

阿里云的人工智能平台 PAI,作为一站式的机器学习和深度学习平台,对DistilQwen2.5-R1模型系列提供了全面的技术支持。无论是开发者还是企业客户,都可以通过 PAI-ModelGallery 轻松实现 Qwen2.5 系列模型的训练、评测、压缩和快速部署。本文详细介绍在 PAI 平台使用 DistilQwen2.5-R1 蒸馏模型的全链路最佳实践。

299 63
|
1月前
|
人工智能 分布式计算 大数据
|

大数据& AI 产品月刊【2025年3月】

大数据& AI 产品技术月刊【2025年3月】,涵盖3月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。

362 57
|
2月前
|
人工智能 边缘计算 算法
|

DistilQwen2.5-R1发布:知识蒸馏助推小模型深度思考

DistilQwen2.5-R1通过知识蒸馏技术,将大规模深度推理模型的知识迁移到小模型中,显著提升了小模型的推理能力。实验结果表明,DistilQwen2.5-R1在数学、代码和科学问题等多个基准测试中表现优异,尤其在7B参数量级上超越了其他开源蒸馏模型。 本文将深入阐述 DistilQwen2.5-R1 的蒸馏算法、性能评估,并且提供在阿里云人工智能平台 PAI 上的使用指南及相关下载教程。

379 64
|
2月前
|
人工智能 自然语言处理 运维
|

【新模型速递】PAI一键云上零门槛部署DeepSeek-V3-0324、Qwen2.5-VL-32B

PAI-Model Gallery 集成国内外 AI 开源社区中优质的预训练模型,涵盖了 LLM、AIGC、CV、NLP 等各个领域,用户可以通过 PAI 以零代码方式实现从训练到部署再到推理的全过程,获得更快、更高效、更便捷的 AI 开发和应用体验。 现阿里云PAI-Model Gallery已同步接入DeepSeek-V3-0324、Qwen2.5-VL-32B-Instruct两大新模型,提供企业级部署方案。

249 16
|
2月前
|
机器学习/深度学习 算法 机器人
|

强化学习:时间差分(TD)(SARSA算法和Q-Learning算法)(看不懂算我输专栏)——手把手教你入门强化学习(六)

本文介绍了时间差分法(TD)中的两种经典算法:SARSA和Q-Learning。二者均为无模型强化学习方法,通过与环境交互估算动作价值函数。SARSA是On-Policy算法,采用ε-greedy策略进行动作选择和评估;而Q-Learning为Off-Policy算法,评估时选取下一状态中估值最大的动作。相比动态规划和蒙特卡洛方法,TD算法结合了自举更新与样本更新的优势,实现边行动边学习。文章通过生动的例子解释了两者的差异,并提供了伪代码帮助理解。

224 2
|
2月前
|
人工智能 JSON 自然语言处理
|

如何用大模型评估大模型——PAI-Judge裁判员大语言模型的实现简介

阿里云人工智能平台 PAI 推出 PAI-Judge 裁判员大模型,为用户构建符合应用场景的多维度、细粒度的评测体系,支持单模型评测和双模型竞技两种模式,允许用户自定义参数,实现准确、灵活、高效的模型自动化评测,为模型迭代优化提供数据支撑。 相比通用大模型尤其在回答确定性/数学类问题、角色扮演、创意文体写作、翻译等场景下,PAI-Judge 系列模型表现优异,可以直接用于大模型的评估与质检。

172 8
|
2月前
|
机器学习/深度学习 存储 算法
|

强化学习:蒙特卡罗求解最优状态价值函数——手把手教你入门强化学习(五)

本文介绍了强化学习中的蒙特卡罗算法,包括其基本概念、两种估值方法(首次访问蒙特卡罗与每次访问蒙特卡罗)及增量平均优化方式。蒙特卡罗法是一种基于完整回合采样的无模型学习方法,通过统计经验回报的平均值估计状态或动作价值函数。文章详细讲解了算法流程,并指出其初期方差较大、估值不稳定等缺点。最后对比动态规划,说明了蒙特卡罗法在强化学习中的应用价值。适合初学者理解蒙特卡罗算法的核心思想与实现步骤。

195 4
|
2月前
|
机器学习/深度学习 算法 关系型数据库
|

强化学习:动态规划求解最优状态价值函数——手把手教你入门强化学习(四)

本文介绍了基于模型的强化学习算法,重点讲解动态规划(DP)。动态规划通过分解问题为子问题求解状态价值函数,利用贝尔曼期望方程迭代更新。其核心性质包括最优子结构和重叠子问题,适用于已知转移概率和奖励的MDP场景。文章回顾了前期强化学习基础,并展望了后续内容如蒙特卡罗法。适合初学者系统了解强化学习算法原理与应用。

95 7
|
2月前
|
机器学习/深度学习 C++
|

强化学习:实践理解Markov决策过程(MDP)(干中学系列)——手把手教你入门强化学习(三)

本博客以实践为主,带领读者巩固上期关于“Markov决策过程”的核心概念。通过构建学生马尔可夫奖励模型、计算收获值与状态价值,进一步验证贝尔曼方程。详细介绍了转移概率、奖励值及策略概率的设置,并实现了均匀随机策略下的状态价值计算与最优策略的价值评估。结合代码实例,帮助读者深入理解强化学习理论。适合初学者实践与进阶学习。

152 63
|
2月前
|
机器学习/深度学习 开发框架 .NET
|

强化学习:Markov决策过程(MDP)——手把手教你入门强化学习(二)

本文是“手把手教你入门强化学习”系列的第二篇,重点讲解了强化学习的核心数学模型——Markov决策过程(MDP)。文章从马尔可夫性质出发,逐步引入马尔可夫过程、马尔可夫奖励过程,最终深入到马尔可夫决策过程,详细解析了状态转移、奖励机制、价值函数及贝尔曼方程等关键概念。同时,文中还介绍了策略函数、最优价值函数等内容,并指出求解强化学习问题的关键在于寻找最优策略。通过理论推导与实践结合的方式,帮助读者更好地理解强化学习基础原理。

107 4
|
2月前
|
机器学习/深度学习 人工智能 算法
|

强化学习:Gym的库的实践——小车上山(包含强化学习基础概念,环境配置国内镜像加速)——手把手教你入门强化学习(一)

本文开启“手把手教你入门强化学习”专栏,介绍强化学习基础概念及实践。强化学习通过智能体与环境交互,学习最优策略以最大化累积奖励,适用于复杂动态决策问题。文章讲解智能体、环境等核心概念,并使用Gym库进行案例实操,如CartPole和MountainCar环境的代码实现。最后预告下期将深入马尔科夫决策过程(MDP)。适合初学者系统了解强化学习并动手实践。创作不易,欢迎关注、点赞与收藏!

151 4
|
2月前
|
机器学习/深度学习 物联网 PyTorch
|

小白避坑指南:国内用Colossal-AI微调DeepSeek 1.5B的完整踩坑记录(附镜像加速方案)

本文详细记录了使用Colossal-Ai对DeepSeek-Qwen模型进行微调的过程,包括模型下载、环境部署、数据集处理及代码实现等环节。重点介绍了LoRA低秩适配方法和Colossal-Ai分布式训练框架的使用技巧,解决了模型封装后函数调用冲突、梯度检查点配置等问题。通过命令行参数灵活调整训练配置,最终在两块A100 GPU上完成训练,单卡显存占用约11GB,利用率达85%。文章总结了常见问题及解决方法,为后续研究提供参考。

274 15
|
2月前
|
机器学习/深度学习 人工智能 边缘计算
|

DistilQwen2.5蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践

DistilQwen2.5 是阿里云人工智能平台 PAI 推出的全新蒸馏大语言模型系列。通过黑盒化和白盒化蒸馏结合的自研蒸馏链路,DistilQwen2.5各个尺寸的模型在多个基准测试数据集上比原始 Qwen2.5 模型有明显效果提升。这一系列模型在移动设备、边缘计算等资源受限的环境中具有更高的性能,在较小参数规模下,显著降低了所需的计算资源和推理时长。阿里云的人工智能平台 PAI,作为一站式的机器学习和深度学习平台,对 DistilQwen2.5 模型系列提供了全面的技术支持。本文详细介绍在 PAI 平台使用 DistilQwen2.5 蒸馏小模型的全链路最佳实践。

173 3
|
2月前
|

PAI-Rec推荐平台对于实时特征有三个层次

PAI-Rec推荐平台针对实时特征有三个处理层次:1) 离线模拟反推历史请求时刻的实时特征;2) FeatureStore记录增量更新的实时特征,模型特征导出样本准确性达99%;3) 通过callback回调接口记录请求时刻的特征。各层次确保了实时特征的准确性和时效性。

84 0
|
2月前
|
编解码 人工智能 并行计算
|

基于 Megatron 的多模态大模型训练加速技术解析

Pai-Megatron-Patch 是一款由阿里云人工智能平台PAI 研发的围绕英伟达 Megatron 的大模型训练配套工具,旨在帮助开发者快速上手大模型,打通大模型相关的高效分布式训练、有监督指令微调、下游任务评估等大模型开发链路。本文以 Qwen2-VL 为例,从易用性和训练性能优化两个方面介绍基于 Megatron 构建的 Pai-Megatron-Patch 多模态大模型训练的关键技术

193 8
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
|

云上一键部署通义千问 QwQ-32B 模型,阿里云 PAI 最佳实践

3月6日阿里云发布并开源了全新推理模型通义千问 QwQ-32B,在一系列权威基准测试中,千问QwQ-32B模型表现异常出色,几乎完全超越了OpenAI-o1-mini,性能比肩Deepseek-R1,且部署成本大幅降低。并集成了与智能体 Agent 相关的能力,够在使用工具的同时进行批判性思考,并根据环境反馈调整推理过程。阿里云人工智能平台 PAI-Model Gallery 现已经支持一键部署 QwQ-32B,本实践带您部署体验专属 QwQ-32B模型服务。

1171 17
|
3月前
|
人工智能 自然语言处理 物联网
|

阿里万相重磅开源,人工智能平台PAI一键部署教程来啦

阿里云视频生成大模型万相2.1(Wan)重磅开源!Wan2.1 在处理复杂运动、还原真实物理规律、提升影视质感以及优化指令遵循方面具有显著的优势,轻松实现高质量的视频生成。同时,万相还支持业内领先的中英文文字特效生成,满足广告、短视频等领域的创意需求。阿里云人工智能平台 PAI-Model Gallery 现已经支持一键部署阿里万相重磅开源的4个模型,可获得您的专属阿里万相服务。

808 13
|
3月前
|
机器学习/深度学习 存储 算法
|

DistilQwen2.5发布:通义千问蒸馏小模型再升级

为解决大语言模型在资源有限环境下的高计算成本和复杂性问题,阿里云推出了基于 Qwen2.5 的轻量化模型系列 DistilQwen2.5。该模型通过双层蒸馏框架、数据优化策略及参数融合技术,在保留性能的同时显著降低计算资源消耗。本文提供了详细的使用教程和代码示例,方便用户在 PAI 平台上调用。

491 7
|
3月前
|
机器学习/深度学习 人工智能 缓存
|

云上玩转DeepSeek系列之五:实测优化16%, 体验FlashMLA加速DeepSeek-V2-Lite推理

DeepSeek-AI 开源的 FlashMLA 是一个优化多层注意力机制的解码内核,显著提升大语言模型的长序列处理和推理效率。本文介绍了如何在 PAI 平台上安装并使用 FlashMLA 部署 DeepSeek-V2-Lite-Chat 模型。通过优化后的 FlashMLA,实现了约 16% 的性能提升。

359 10
|
3月前
|
JSON 人工智能 API
|

云上玩转DeepSeek系列之四:DeepSeek R1 蒸馏和微调训练最佳实践

本文将为您带来“DeepSeek R1+Qwen 大模型蒸馏和微调训练”最佳实践。阿里云 PAI 平台提供了围绕 DeepSeek 模型的最佳实践,涵盖快速部署、应用搭建、蒸馏和微调等环节,帮助开发者高效利用计算资源,使用 Model Gallery 功能,轻松完成部署与微调任务。

497 8
|
3月前
|
存储 人工智能 数据库
|

面向教育场景的大模型 RAG 检索增强解决方案

检索增强生成模型结合了信息检索与生成式人工智能的优点,从而在特定场景下提供更为精准和相关的答案。以人工智能平台 PAI 为例,为您介绍在云上使用一站式白盒化大模型应用开发平台 PAI-LangStudio 构建面向教育场景的大模型 RAG 检索增强解决方案,应用构建更简便,开发环境更直观。此外,PAI 平台同样发布了面向医疗、金融和法律领域的 RAG 解决方案。

236 7
|
3月前
|
人工智能 Java 程序员
|

一文彻底拿下,赶紧本地部署DeepSeek体验一下最牛的大模型

本文介绍如何本地化部署DeepSeek大模型(deepseek-r1)及open-webui的安装过程,包括命令行操作、版本兼容性处理等详细步骤。DeepSeek号称“国运级”大模型,性能媲美OpenAI,支持直接对话,降低使用门槛。通过本教程,读者可以快速上手体验这一强大的推理模型。

236 0
我要发布