基于模板匹配算法的车牌数字字母识别matlab仿真,带GUI界面

简介: 基于模板匹配算法的车牌数字字母识别matlab仿真,带GUI界面

1.算法理论概述

   随着交通工具的普及,车辆数量快速增长,车辆管理变得越来越重要。在车辆管理中,车牌号码的自动识别是一个重要的环节。从传统的手工识别,到现在的自动化识别,车牌识别技术已经成为了一个热门的研究领域。其中,数字字母识别是车牌识别的重要组成部分。本文将介绍基于ORC模板匹配算法的车牌数字字母识别方法。

1.1算法原理

   ORC模板匹配算法是一种基于模板匹配的数字字母识别方法。该方法基于一组预定义的数字字母模板,通过计算待识别数字字母与模板的相似度,来确定待识别数字字母的类别。具体实现步骤如下:

1.2数据预处理

   将待识别的数字字母图像进行预处理,包括二值化、去噪等操作,以便提高识别精度。

1.3特征提取

   从预处理后的数字字母图像中,提取出一组特征向量,用于表示该数字字母的形态特征。常用的特征提取方法包括傅里叶描述符、轮廓描述符、哈尔描述符等。

1.4模板匹配

   将待识别数字字母的特征向量与预定义的数字字母模板的特征向量进行比较,计算它们之间的相似度。相似度的计算可以使用欧几里得距离、余弦相似度等方式。根据计算出的相似度,确定待识别数字字母的类别,并将结果输出。

   下面给出ORC模板匹配算法中常用的两种相似度计算方式及其公式:
   欧几里得距离是一种常用的距离度量方式,它可以用于计算两个向量之间的相似度。设向量a和向量b的维度均为n,则它们之间的欧几里得距离为:

d(a,b) = sqrt(sum((ai - bi) ^ 2)), i = 1, 2, ..., n

其中,ai和bi分别表示向量a和向量b的第i维元素。
余弦相似度是一种常用的相似度计算方式,它可以用于计算两个向量之间的相似度。设向量a和向量b的维度均为n,则它们之间的余弦相似度为:
cos(a,b) = dot(a,b) / (||a|| * ||b||)

其中,dot(a,b)表示向量a和向量b的点积,||a||表示向量a的模,||b||表示向量b的模。
下面给出ORC模板匹配算法的具体实现步骤。
将待识别的数字字母图像进行预处理,包括灰度化、二值化、去噪等操作。其中,灰度化可以采用RGB灰度化、加权平均法等方式;二值化可以采用固定阈值、自适应阈值等方式;去噪可以采用中值滤波、均值滤波等方式。
从预处理后的数字字母图像中,提取出一组特征向量,用于表示该数字字母的形态特征。常用的特征提取方法有以下几种:

(1)轮廓描述符(Contour Descriptor):该方法通过计算数字字母边缘的曲率和方向,生成一个轮廓向量,用于表示数字字母的形状特征。

(2)傅里叶描述符(Fourier Descriptor):该方法将数字字母的轮廓看作一个连续的曲线,通过傅里叶变换将其分解成若干个正弦和余弦波形,然后将这些波形的系数作为特征向量,用于表示数字字母的形态特征。

(3)Zernike矩(Zernike Moment):该方法通过将数字字母的轮廓投影到一组正交的基函数上,生成一组Zernike矩,用于表示数字字母的形态特征。
将待识别数字字母的特征向量与预定义的数字字母模板的特征向量进行比较,计算它们之间的相似度。相似度的计算可以使用欧几里得距离、余弦相似度等方式。具体实现步骤如下:
(1)定义一组预定义的数字字母模板,每个模板都具有一组特征向量。

(2)将待识别数字字母的特征向量与每个模板的特征向量进行比较,计算它们之间的相似度。

(3)选择相似度最高的模板,将其类别作为待识别数字字母的类别。

2.算法运行软件版本
matlab2022a

3.算法运行效果图预览

745eef78107ce2a4f2f7b1dc6693808a_82780907_202308102317360990385014_Expires=1691681257&Signature=42wrFFHyuPv%2BY3fL8hZJOs7cai0%3D&domain=8.png
4454a268be610db9d9b9c7adb26cc790_82780907_202308102317360990777332_Expires=1691681257&Signature=2CgYTGURG0eLYr%2FEVqbmIdn1G50%3D&domain=8.png

4.部分核心程序
```function r=controlling(NR)
% 找到纵坐标直方图中值为6的区间
[Q,W]=hist(NR(:,4));
ind=find(Q==6);

for k=1:length(NR)
C_5(k)=NR(k,2) * NR(k,4);
end
NR2=cat(2,NR,C_5');
[E,R]=hist(NR2(:,5),20);
Y=find(E==6);
if length(ind)==1% 如果纵坐标直方图中有且仅有一个纵坐标值出现次数为6
MP=W(ind);% 将该纵坐标值作为分割容器的中心位置
binsize=W(2)-W(1);% 计算容器的大小
container=[MP-(binsize/2) MP+(binsize/2)]; % 创建一个分割容器
r=takeboxes(NR,container,2); % 将位于容器内部的字符区域提取出来
elseif length(Y)==1
MP=R(Y);
binsize=R(2)-R(1);
container=[MP-(binsize/2) MP+(binsize/2)];
r=takeboxes(NR2,container,2.5);
elseif isempty(ind) || length(ind)>1% 如果分割容器为空
[A,B]=hist(NR(:,2),20);
ind2=find(A==6);
if length(ind2)==1
MP=B(ind2);
binsize=B(2)-B(1);
container=[MP-(binsize/2) MP+(binsize/2)];
r=takeboxes(NR,container,1);
else
container=guessthesix(A,B,(B(2)-B(1))); % 根据面积直方图和区间大小猜测分割容器的位置
if ~isempty(container)% 如果分割容器不为空,将位于容器内部的字符区域提取出来
r=takeboxes(NR,container,1);
elseif isempty(container)
container2=guessthesix(E,R,(R(2)-R(1)));
if ~isempty(container2) % 如果分割容器不为空,将位于容器内部的字符区域提取出来
r=takeboxes(NR2,container2,2.5);
else
r=[]; % 如果分割容器为空,返回空矩阵
end
end
end
end

function container=guessthesix(Q,W,bsize)

for l=5:-1:2
val=find(Q==l);
var=length(val);
if isempty(var) || var == 1% 如果出现次数为l的高度值的个数为空,或者等于1
if val == 1
index=val+1; % 计算要查找的位置
else
index=val;
end
if length(Q)==val% 如果要查找的位置是直方图的最后一个位置,将查找位置置为空
index=[];
end
if Q(index)+Q(index+1) == 6 % 如果查找位置及其相邻的位置出现次数之和等于6
container=[W(index)-(bsize/2) W(index+1)+(bsize/2)];% 创建一个分割容器
break;
elseif Q(index)+Q(index-1) == 6 % 如果查找位置及其前一个位置出现次数之和等于6
container=[W(index-1)-(bsize/2) W(index)+(bsize/2)]; % 创建一个分割容器
break;
end
else% 如果出现次数为l的高度值的个数大于1
for k=1:1:var
if val(k)==1 % 计算要查找的位置
index=val(k)+1;
else
index=val(k);
end
if length(Q)==val(k) % 如果要查找的位置是直方图的最后一个位置,将查找位置置为空
index=[];
end
if Q(index)+Q(index+1) == 6 % 如果查找位置及其相邻的位置出现次数之和等于6
container=[W(index)-(bsize/2) W(index+1)+(bsize/2)]; % 创建一个分割容器
break;
elseif Q(index)+Q(index-1) == 6 % 如果查找位置及其前一个位置出现次数之和等于6
container=[W(index-1)-(bsize/2) W(index)+(bsize/2)];% 创建一个分割容器
break;
end
end
if k~=var% 如果找到分割容器,退出循环
break;
end
end
end
if l==2% 如果循环结束后没有找到分割容器,将分割容器置为空
container=[];
end

function letter=readLetter(snap)

load NewTemplates% 加载新的模板
snap=imresize(snap,[42 24]);% 将图像缩放为指定大小
comp=[ ];% 初始化一个空数组
for n=1:length(NewTemplates)% 对于每个模板
sem=corr2(NewTemplates{1,n},snap);% 计算当前模板与图像的相关性
comp=[comp sem];% 将相关性值添加到数组中
end
vd=find(comp==max(comp));% 找到相关性值最大的位置
if vd==1 || vd==2% 根据不同的位置,将字母或数字赋值给letter变量
letter='A';
elseif vd==3 || vd==4
letter='B';
elseif vd==5
letter='C';
.......................................................................
else
letter='0';
end

function r=takeboxes(NR,container,chk)

takethisbox=[];% 初始化一个空数组
for i=1:size(NR,1)% 对于每个数字区域
if NR(i,(2chk))>=container(1) && NR(i,(2chk))<=container(2)% 如果数字区域的中心点在分割容器内部
takethisbox=cat(1,takethisbox,NR(i,:));% 将该数字区域添加到数组中
end
end
r=[];% 初始化一个空数组
for k=1:size(takethisbox,1)% 对于每个数字区域
var=find(takethisbox(k,1)==reshape(NR(:,1),1,[]));% 找到该数字区域的行号
if length(var)==1% 如果只有一个数字区域与该行匹配
r=[r var];% 将该数字区域的列号添加到数组中
else% 对于每个匹配的数字区域
for v=1:length(var)% 判断该数字区域的中心点是否在分割容器内部
M(v)=NR(var(v),(2chk))>=container(1) && NR(var(v),(2chk))<=container(2);
end
var=var(M);% 选出中心点在分割容器内部的数字区域
r=[r var];% 将这些数字区域的列号添加到数组中
end
end

```

相关文章
|
19小时前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,带GUI界面,对比BP,RBF,LSTM
这是一个基于MATLAB2022A的金融数据预测仿真项目,采用GUI界面,比较了CNN、BP、RBF和LSTM四种模型。CNN和LSTM作为深度学习技术,擅长序列数据预测,其中LSTM能有效处理长序列。BP网络通过多层非线性变换处理非线性关系,而RBF网络利用径向基函数进行函数拟合和分类。项目展示了不同模型在金融预测领域的应用和优势。
|
5天前
|
机器学习/深度学习 存储 算法
基于CNN+LSTM深度学习网络的时间序列预测matlab仿真,并对比CNN+GRU网络
该文介绍了使用MATLAB2022A进行时间序列预测的算法,结合CNN和RNN(LSTM或GRU)处理数据。CNN提取局部特征,RNN处理序列依赖。LSTM通过门控机制擅长长序列,GRU则更为简洁、高效。程序展示了训练损失、精度随epoch变化的曲线,并对训练及测试数据进行预测,评估预测误差。
|
6天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于DCT变换和位平面分解的数字水印嵌入提取算法matlab仿真
这是一个关于数字水印算法的摘要:使用MATLAB2022a实现,结合DCT和位平面分解技术。算法先通过DCT变换将图像转至频域,随后利用位平面分解嵌入水印,确保在图像处理后仍能提取。核心程序包括水印嵌入和提取,以及性能分析部分,通过PSNR和NC指标评估水印在不同噪声条件下的鲁棒性。
|
7天前
|
机器学习/深度学习 算法 安全
m基于Qlearning强化学习工具箱的网格地图路径规划和避障matlab仿真
MATLAB 2022a中实现了Q-Learning算法的仿真,展示了一种在动态环境中进行路线规划和避障的策略。Q-Learning是强化学习的无模型方法,通过学习动作价值函数Q(s,a)来优化智能体的行为。在路线问题中,状态表示智能体位置,动作包括移动方向。通过正负奖励机制,智能体学会避开障碍物并趋向目标。MATLAB代码创建了Q表,设置了学习率和ε-贪心策略,并训练智能体直至达到特定平均奖励阈值。
40 15
|
7天前
|
算法 数据安全/隐私保护 C++
基于二维CS-SCHT变换和扩频方法的彩色图像水印嵌入和提取算法matlab仿真
该内容是关于一个图像水印算法的描述。在MATLAB2022a中运行,算法包括水印的嵌入和提取。首先,RGB图像转换为YUV格式,然后水印通过特定规则嵌入到Y分量中,并经过Arnold置乱增强安全性。水印提取时,经过逆过程恢复,使用了二维CS-SCHT变换和噪声对比度(NC)计算来评估水印的鲁棒性。代码中展示了从RGB到YUV的转换、水印嵌入、JPEG压缩攻击模拟以及水印提取的步骤。
|
8天前
|
机器学习/深度学习 算法 数据可视化
基于BP神经网络的32QAM解调算法matlab性能仿真
```markdown - 32QAM解调算法运用BP神经网络在matlab2022a中实现,适应复杂通信环境。 - 网络结构含输入、隐藏和输出层,利用梯度下降法优化,以交叉熵损失最小化为目标训练。 - 训练后,解调通过前向传播完成,提高在噪声和干扰中的数据恢复能力。 ``` 请注意,由于字符限制,部分详细信息(如具体图示和详细步骤)未能在摘要中包含。
|
9天前
|
算法
简记二分算法模板与代码案例:整数二分和浮点数二分
本文介绍了两种算法模板,分别是整数二分和浮点数二分。
14 0
|
10天前
|
机器学习/深度学习 算法 网络架构
基于yolov2深度学习网络的单人口罩佩戴检测和人脸定位算法matlab仿真
摘要:该内容展示了一个基于YOLOv2的单人口罩佩戴检测和人脸定位算法的应用。使用MATLAB2022A,YOLOv2通过Darknet-19网络和锚框技术检测图像中的口罩佩戴情况。核心代码段展示了如何处理图像,检测人脸并标注口罩区域。程序会实时显示检测结果,等待一段时间以优化显示流畅性。
|
10天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-GRU-Attention的时间序列回归预测matlab仿真
摘要: 该文介绍了使用 MATLAB 2022a 进行时间序列预测的算法优化。优化前后对比显示效果改善明显。算法基于CNN、GRU和注意力机制的深度学习模型,其中GWO(灰狼优化)用于优化超参数。CNN提取时间序列的局部特征,GRU处理序列数据的长期依赖,注意力机制聚焦关键信息。GWO算法模拟灰狼行为以实现全局优化。提供的代码片段展示了网络训练和预测过程,以及预测值与真实值的比较。
|
12天前
|
机器学习/深度学习 算法
m基于GA-GRU遗传优化门控循环单元网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,一个基于遗传算法优化的GRU网络展示显著优化效果。优化前后的电力负荷预测图表显示了改进的预测准确性和效率。GRU,作为RNN的一种形式,解决了长期依赖问题,而遗传算法用于优化其超参数,如学习率和隐藏层单元数。核心MATLAB程序执行超过30分钟,通过迭代和适应度评估寻找最佳超参数,最终构建优化的GRU模型进行负荷预测,结果显示预测误差和模型性能的提升。
37 4

热门文章

最新文章