一文详述:AI 网关与 API 网关到底有什么区别?
近年来,AI发展迅猛,大模型成为推动业务创新的关键力量。企业面临如何安全管理和部署AI应用的挑战,需设计既能满足当前需求又可适应未来发展的基础架构。AI网关应运而生,在集成、管理和优化AI应用中扮演重要角色。本文探讨AI网关与API网关的区别,分析AI系统为何需要专门网关,并提供选择合适AI网关的建议。AI网关不仅支持多种模型,还具备高级安全性和性能优化功能,有助于企业在复杂环境中灵活应用AI技术。
【Chain-of-Thought Prompting】链式思考(CoT)提示、零样本 COT 提示、自动思维链(Auto-CoT)
链式思考(CoT)提示是一种通过中间推理步骤实现复杂推理能力的方法,由Wei等人(2022)引入。它能够与少样本提示结合,提高任务处理效果。通过逐步推理,即使是大型语言模型也能展示出更强的推理能力。例如,在解决数学问题或逻辑判断上,CoT提示能显著提升正确率,尤其是在缺乏大量训练数据的情况下。
使用Git LFS从Hugging Face下载大型语言模型
Hugging Face作为主流的模型库,提供了大量预训练模型,但这些模型的大尺寸使得直接下载可能会遇到困难。Git LFS(Large File Storage)作为Git的一个扩展,为我们提供了一个解决方案
计算机组成原理(2021最新版)面试知识点集锦
本文介绍了计算机的发展历程、分类及性能提升的关键技术。从1946年第一代电子管计算机“ENIAC”到现代超大规模集成电路计算机,计算机经历了四个主要发展阶段,体积不断缩小,速度和功能大幅提升。未来计算机有望向超导、纳米、光子、DNA、量子及神经网络等方向发展。文中还探讨了冯·诺伊曼结构及其瓶颈问题,并分析了CPU性能提升的挑战与解决方案,如并行计算、流水线技术和预测机制等。
【专利技术】破解“眼见不为实”困局:高维数据多模态伪造检测专利落地,筑牢数字内容安全防线(第3期)
合肥高维数据获国家发明专利授权,其“融合多模态信息的深度伪造检测技术”通过视觉与音频协同分析,精准识别AI伪造视频,有效应对虚假新闻、身份诈骗等风险,已应用于媒体、金融、政务及个人隐私保护等领域,筑牢数字安全防线。
屏幕拍照精准溯源:从“防不住”到“不敢泄”的震慑闭环是如何形成的?
屏幕拍照泄密频发,隐形水印技术以“无感嵌入、拍必留痕”破解防护难题。通过在显示画面中嵌入用户身份、设备信息等溯源数据,实现拍照即锁定责任人,构建“事前威慑、事中记录、事后追责”的全链路闭环,筑牢“不敢泄、不能泄、不想泄”安全防线。
技术人的知识输出利器:一套高质量知乎回答生成指令模板
本文提供一套系统化知乎高赞回答生成模板,结合AI工具(如DeepSeek、通义千问),助力技术人高效输出高质量内容。涵盖结构框架、质量检查、实战示例与合规建议,提升表达清晰度与内容价值,适用于经验分享、技术科普等多种场景,实现知识输出的标准化与高效化。
鸿蒙 HarmonyOS NEXT端云一体化开发-云数据库篇
云数据库采用存储区、对象类型、对象三级结构,支持灵活的数据建模与权限管理,可通过AGC平台或本地项目初始化,实现数据的增删改查及端侧高效调用。
AI协作的四大支柱:协议详解与应用场景全解析
本文深入解析Agentic AI协议的四大核心协议——MCP、A2A、ACP与ANP,涵盖技术特性、应用场景及选型指南,助你掌握多代理协作系统构建要点。
Qwen-MT:翻得快,译得巧
今天,机器翻译模型Qwen-MT正式上线,支持92种语言互译,具备高度可控性与低延迟、低成本特点,适用于多种场景。开发者可通过Qwen API体验其强大翻译能力。
AI-Compass LLM合集-多模态模块:30+前沿大模型技术生态,涵盖GPT-4V、Gemini Vision等国际领先与通义千问VL等国产优秀模型
AI-Compass LLM合集-多模态模块:30+前沿大模型技术生态,涵盖GPT-4V、Gemini Vision等国际领先与通义千问VL等国产优秀模型
通义灵码2.5来袭!MCP 功能直接让开发效率提升300%(附实战案例)
通义灵码2.5是阿里云推出的AI编码助手,以智能协作为核心,深度融合开发全流程。其三大升级点包括:编程智能体实现任务自主规划、MCP工具生态支持自然语言生成SQL、记忆进化系统个性化适配开发者习惯。通过自然语言即可完成数据库操作、代码生成与优化,大幅提升开发效率。此外,还具备工程级变更管理、多文件协同编辑及版本控制功能,适用于多种IDE环境,为企业提供安全高效的开发解决方案。
如何在通义灵码里使用 MCP 能力
通义灵码支持MCP工具使用,通过模型自主规划实现工具调用,深度集成魔搭MCP广场,涵盖2400+热门服务。提供STDIO和SSE两种通信模式,适用于不同场景需求。用户可通过智能体模式调用MCP工具,完成如网页内容抓取、天气查询等任务。文档详细介绍了服务配置、使用流程及常见问题解决方法,助力开发者高效拓展AI编码能力。
如何成为企业级大模型架构师?
企业级大模型架构师需要掌握从 底层算力、模型训练、微调优化、推理部署、企业集成 到 安全合规 的全栈能力。这里提供一个完整的 企业级大模型架构师成长体系。
用通义灵码开发一个Python时钟:手把手体验AI程序员加持下的智能编码
通义灵码是基于通义大模型的AI研发辅助工具,提供代码智能生成、研发问答、多文件修改等功能,帮助开发者提高编码效率。本文通过手把手教程,使用通义灵码开发一个简单的Python时钟程序,展示其高效、智能的编码体验。从环境准备到代码优化,通义灵码显著降低了开发门槛,提升了开发效率,适合新手和资深开发者。最终,你将体验到AI加持下的便捷与强大功能。
为什么自己写的算法备案文档越改问题越多?
算法备案文档撰写中,许多开发者遇到越改问题越多的困境。主要原因包括:缺乏明确指导标准、对算法理解不深、部门间沟通协作不足、审核反馈机制缺失及撰写人员专业性不足。为解决这些问题,建议深入学习备案要求、加强算法研究、建立有效沟通机制、严格审核反馈,并寻求专业人士帮助。通过这些方法,可以提高文档质量,确保顺利通过审核。
基于qwen2.5的长文本解析、数据预测与趋势分析、代码生成能力赋能esg报告分析
Qwen2.5是一款强大的生成式预训练语言模型,擅长自然语言理解和生成,支持长文本解析、数据预测、代码生成等复杂任务。Qwen-Long作为其变体,专为长上下文场景优化,适用于大型文档处理、知识图谱构建等。Qwen2.5在ESG报告解析、多Agent协作、数学模型生成等方面表现出色,提供灵活且高效的解决方案。
解锁企业智能化的关键力量
【10月更文挑战第5天】随着人工智能(AI)技术的不断发展,大规模预训练模型正逐渐成为推动各行业智能化转型的核心动力。阿里云通义大模型作为阿里云推出的企业级AI解决方案,通过深度学习、自然语言处理(NLP)、计算机视觉(CV)等前沿技术,助力企业在多样化场景中实现创新和突破。本文将详细介绍阿里云通义大模型的技术原理、应用场景及其在企业智能化转型中的独特优势,帮助企业更好地理解和利用这一前沿技术。
通义万相功能使用实战
【7月更文第2天】阿里云的通义万相是款AI绘画工具,让用户通过文本描述创建个性化头像。首先,注册阿里云账号并登录平台。明确头像风格、特征和背景,然后在平台上选择“文本生成图像”,输入详细描述。设定尺寸后提交生成。系统会提供多个选项,用户可选择、调整或重新生成。满意后下载头像,应用于社交平台。记得提供清晰的描述以获取最佳效果,勇于探索不同的创意组合。通义万相,让AI助你实现艺术想象。
千亿大模型来了!通义千问110B模型开源,魔搭社区推理、微调最佳实践
近期开源社区陆续出现了千亿参数规模以上的大模型,这些模型都在各项评测中取得杰出的成绩。今天,通义千问团队开源1100亿参数的Qwen1.5系列首个千亿参数模型Qwen1.5-110B,该模型在基础能力评估中与Meta-Llama3-70B相媲美,在Chat评估中表现出色,包括MT-Bench和AlpacaEval 2.0。
通义大模型合作计划升级|欢迎伙伴加入
阿里云面向生态伙伴开放“阿里云百炼“大模型服务平台和“通义”系列为代表的各类大模型产品能力,与产品生态伙伴展开基于大模型应用方向的Maas(模型即服务)产品集成与被集成合作,旨在为用户提供AI领域研究成果在行业中的最新技术应用与解决方案,而共同开展的一项关于大模型应用合作的产品合作计划。
AI编码助手:探索其效能与限制
众所周知,AI编码助手是当下技术发展的产物,它的出现给开发者们带来了许多便利和效率提升,但是对于只允许使用AI编写代码而禁止程序员手写的做法,我个人觉得还是要从长计议。甚至是随着AI编码助手的快速发展,开发者们纷纷试用这些AI工具以提高开发和工作效率,但是有些公司甚至要求只允许使用AI编写代码,不允许程序员手写。那么本文就来聊聊关于只允许使用AI编写代码,不允许程序员手写这种做法的可行性,并探讨分享一下AI编码助手的潜力与限制。
通义星尘,通义灵码,镇岳510,一文了解云栖重大发布
本届云栖大会,我们发布了千亿级参数规模的大模型通义千问2.0、一站式模型应用开发平台阿里云百炼以及8个行业大模型,同时全面升级了人工智能平台PAI,并对超40款云产品提供了Serverless的能力,推出全球首款容器计算服务ACS。
一人挑战一支研发团队,3步搞定全栈开发
本文是 Qwen3-Coder 挑战赛教程第四期,我将带你完整走通一个真实项目案例:从零搭建一个“AI 舞蹈生成器”网站——上传一张人物照片,点击“立即生成”,即可获得一段该人物跳舞的动态视频。 整个过程仅需三步,无需前端、后端或模型部署经验,真正实现“说话即开发”。
通义灵码产品演示: 数据库设计与数据分析
本演示展示如何使用通义灵码进行数据库设计与数据分析。通过SQLite构建电商订单表,利用AI生成表结构、插入样本数据,并完成多维度数据分析及可视化图表展示,体现AI在数据库操作中的高效能力。
支持向量机深度解析:从数学原理到工程实践的完整指南
蒋星熠Jaxonic,机器学习实践者,痴迷于SVM的数学之美与工程应用。擅长通过核技巧解决非线性问题,在文本分类、图像识别等领域积累丰富经验。倡导理论与实践结合,致力于构建高效、可解释的AI模型。
MicroPython+ESP32 C3开发上云
本文介绍了基于MicroPython的ESP32 C3开发,涵盖GPIO控制、PWM调光、定时器、DS18B20温度采集、WiFi连接及Socket通信等内容,并详细演示了如何通过WIFI模块连接新大陆云平台,实现设备登录与心跳包维持连接。
WEB渗透-文件上传漏洞-下篇
本文详解文件上传安全漏洞,涵盖白名单绕过(如00截断、条件竞争)、图片木马制作与利用、以及IIS、Apache、Nginx等常见解析漏洞原理与防御。结合实战案例,深入剖析攻击手法与修复方案。
通义灵码+支付 MCP:30 分钟实现创作打赏智能体
本文介绍如何使用通义灵码智能体与 qwen3 和支付 MCP 编写创作打赏智能体,该智能体能够完成日常聊天、诗词创作和请求打赏并生成支付链接功能。
混合检索技术:如何提升AI智能体50%的响应效率?
本文深入解析检索增强智能体技术,探讨其三大集成模式(工具模式、预检索模式与混合模式),结合实战代码讲解RAG组件链构建、上下文压缩、混合检索等关键技术,并提供多步检索工作流与知识库自更新机制设计,助力高效智能体系统开发。
视觉感知RAG×多模态推理×强化学习=VRAG-RL
通义实验室自然语言智能团队发布并开源了VRAG-RL,一种视觉感知驱动的多模态RAG推理框架。它能像人一样“边看边想”,通过粗到细的视觉仿生感知机制,逐步聚焦关键区域,精准提取信息。VRAG-RL结合强化学习与多专家采样策略,优化检索与推理路径,在多个视觉语言基准数据集上表现出色,显著提升准确性和效率。项目已发布技术方案并开源代码,支持快速部署和二次开发。
aipy实战:Deepseek-V3、Hunyuan&Qwen分析618平板攻略
Aipy是一款结合LLM与Python的智能工具,用户通过简单指令即可让LLM分析并生成代码,实时解决问题。本次v0.1.28版本新增联网搜索、案例分享等功能,并引入混元和Qwen模型。测评中,三个模型完成“618平板选购攻略”任务表现各异:deepseek-v3界面精美、信息全面但价格有偏差;hunyuan-turbos-latest信息不全但界面简洁;qwen-plus-latest推荐合理但数据失真。总体而言,Aipy在操作友好性和分析界面上显著提升,适合解决实际问题。
使用CAMEL框架和Qwen模型自动进行数据获取及报告与知识图谱生成
此笔记本演示如何设置和利用 CAMEL 的检索增强生成(RAG)结合 Milvus 进行高效的网页抓取、多智能体角色扮演任务和知识图谱构建。我们将通过一个使用 Qwen 模型对 2024 年巴黎奥运会的土耳其射手进行全面研究的例子来逐步演示。
大模型代码能力体验报告之贪吃蛇小游戏《一》:Claude.ai篇 - 生成、预览和快速部署的serverless一条龙
本文介绍了通过Claude.ai生成并优化Web版贪吃蛇游戏的过程,展示了其强大的代码生成功能及用户友好的界面设计。从初始版本的快速生成到根据用户反馈调整游戏速度,再到提供多种实用工具如文件管理、版本控制和一键部署,Claude.ai不仅是一个代码助手,更像是一个全面的serverless开发平台。文中还呼吁国内厂商关注此类技术的发展。
通义灵码实践场景与效果分享
作为后端开发工程师,我利用通义灵码结合企业知识库和代码库,生成符合团队规范的代码,效率提升约40%。灵码支持实时智能补全、代码质量提升及文档自动生成,简化了开发流程,减少了重复工作,显著提升了团队的开发效率和代码质量。
大模型赋能智能座舱,NVIDIA 深度适配通义千问大模型
9月20日杭州云栖大会上, NVIDIA DRIVE Orin系统级芯片实现了与阿里云通义千问多模态大模型Qwen2-VL的深度适配。阿里云、斑马智行联合NVIDIA英伟达推出舱驾融合大模型解决方案,基于通义大模型开发“能听会看”的智能座舱助理,让车内人员通过语音交流就能操作座舱内的各类应用,享受极致丰富的交互体验。
智能对话机器人(通义版)会话接口API使用Quick Start
本文主要演示了如何使用python脚本快速调用智能对话机器人API接口,在参数获取的部分给出了具体的获取位置截图,这部分容易出错,第一次使用务必仔细参考接入参数获取的位置。
探索通义语音团队的创新之作 —— FunAudioLLM模型评测
随着人工智能技术的飞速发展,语音识别和语音合成技术在各个领域得到了广泛应用。阿里云推出的“通义语音大模型FunAudioLLM”作为最新的语音处理技术,备受业界关注。本次评测将深入探讨通义语音大模型的功能、性能及其在实际应用中的表现。
阿里云服务器部署Jupyter私房菜
在阿里云ECS上,选用2核2G的配置,安装Ubuntu 22.04,然后部署Nginx作为Jupyter Notebook的反向代理。安装Miniconda3,配置清华TUNA镜像源以加速下载。创建Jupyter Notebook,设置密码和远程访问,通过Nginx配置实现安全访问。整个过程包括安装Jupyter,修改Nginx配置,最后通过浏览器访问 Notebook。