溯源技术革命:新型数字水印如何让数据“开口说话”,指认泄密源头?
当敏感信息遭偷拍、打印外泄或录音外传,隐形数字水印如“数据守护者”悄然溯源,精准锁定泄密源头。跨屏幕、纸质、音视频等多介质,实现“电-光-电”“电-纸-电”“电-空-电”全链路追踪。从军工到金融,从会议到协作,水印技术正构筑数据安全“最后一公里”防线。AIGC时代,更将融合AI与区块链,守护数字真实性。
Redis-常用语法以及java互联实践案例
本文详细介绍了Redis的数据结构、常用命令及其Java客户端的使用,涵盖String、Hash、List、Set、SortedSet等数据类型及操作,同时提供了Jedis和Spring Boot Data Redis的实战示例,帮助开发者快速掌握Redis在实际项目中的应用。
LangChain默认工具正在污染你的知识库!PDF解析崩溃真相
本文深入探讨RAG项目中PDF解析的痛点与解决方案,分析LangChain默认工具的局限性,提出专业级文档处理架构设计与工具选型策略,涵盖表格图像处理、多模态解析与可扩展管道实现,助力提升RAG系统效果。
Trinity-RFT:构建智能体持续学习的自动化强化微调工厂
大型语言模型作为智能体在真实环境中持续交互学习面临诸多挑战。 Trinity-RFT 是通义实验室推出的强化微调框架,旨在实现智能体的持续进化。它通过探索、训练与经验池的解耦设计,支持多样化训练模式,提升资源利用率和学习稳定性。同时,Trinity-RFT 提供灵活的数据处理与算法模块化功能,降低应用与研究门槛,助力迈向终身学习与自主进化的智能体时代。
优化通义大模型推理性能:企业级场景下的延迟与成本削减策略
本文基于金融、电商、医疗等领域的实战经验,深入探讨通义千问等大模型的推理优化技术栈。从计算图优化、批处理策略、量化压缩到系统架构四个维度展开,结合Python代码示例与压力测试数据,提供企业级解决方案。针对延迟敏感、高吞吐及成本敏感场景,分析性能瓶颈并提出算子融合、动态批处理、混合精度量化等方法,同时设计分布式推理架构与冷启动优化策略。通过案例展示,如电商大促场景优化,实现峰值QPS提升6.5倍、P99延迟降低53%、月度成本下降62%。文章还提供优化实施路线图,助力企业分阶段落地技术方案。
视觉感知RAG×多模态推理×强化学习=VRAG-RL
通义实验室自然语言智能团队发布并开源了VRAG-RL,一种视觉感知驱动的多模态RAG推理框架。它能像人一样“边看边想”,通过粗到细的视觉仿生感知机制,逐步聚焦关键区域,精准提取信息。VRAG-RL结合强化学习与多专家采样策略,优化检索与推理路径,在多个视觉语言基准数据集上表现出色,显著提升准确性和效率。项目已发布技术方案并开源代码,支持快速部署和二次开发。
解锁 Qwen3 的Agent能力,CookBook来咯!
Qwen3系列模型具备强大Agent能力,但从模型到Agent仍存技术难题。为此,我们推出基于Qwen-Agent框架的3个CookBook示例,展示如何让Qwen3丝滑调用MCP Server全过程。不论是本地部署还是API调用模型,开发者均可通过Qwen-Agent完成复杂任务。CookBook包括自然语言驱动数据库操作、云端高德API地理服务及文档转思维导图等功能。Qwen-Agent封装了工具调用模板和解析器,原生支持MCP协议,大幅降低开发成本。欢迎体验并反馈。
Spark-TTS: AI语音合成的"变声大师"
Spark-TTS 是一款革命性的语音合成模型,被誉为“变声大师”。它通过创新的 BiCodec 技术将语音分解为语义和全局两种 Token,实现对音色、性别、语速等属性的精细控制。结合统一的 LLM 架构,Spark-TTS 简化了传统 TTS 的复杂流程,同时提供了前所未有的灵活性。此外,团队还发布了 VoxBox 开源数据集,为行业提供标准评估基准。尽管在零样本场景下仍存改进空间,但 Spark-TTS 已经开启了语音合成新时代,让个性化、可控的 AI 语音成为可能。
Arthas redefine(加载外部的.class文件,redefine到JVM里 )
Arthas redefine(加载外部的.class文件,redefine到JVM里 )
小模型也能有类o1的慢思考能力?使用CAMEL生成CoT数据、Unsloth微调Qwen2.5-1.5B模型并上传至Hugging Face
本项目利用CAMEL生成高质量的CoT数据,结合Unsloth对Qwen2.5-1.5B模型进行微调,并将结果上传至Hugging Face。通过详细步骤介绍从数据生成到模型微调的完整流程,涵盖环境配置、API密钥设置、ChatAgent配置、问答数据生成与验证、数据转换保存、模型微调及推理保存等内容。最终展示了如何优化问答系统并分享实用技巧。 [CAMEL-AI](https://github.com/camel-ai/camel) 是一个开源社区,致力于智能体扩展研究。欢迎在GitHub上关注并加入我们!
人工智能与模型知识库在移动医疗产品中的落地应用
在现代医疗体系中,通义千问大模型与MaxKB知识库的结合,为医生和患者提供了前所未有的支持与便利。该系统通过实时问答、临床决策辅助、个性化学习和患者教育等功能,显著提升了诊疗效率和患者满意度。实际应用如乐问医学APP展示了其强大优势,但数据隐私和安全问题仍需关注。
一文详述:AI 网关与 API 网关到底有什么区别?
近年来,AI发展迅猛,大模型成为推动业务创新的关键力量。企业面临如何安全管理和部署AI应用的挑战,需设计既能满足当前需求又可适应未来发展的基础架构。AI网关应运而生,在集成、管理和优化AI应用中扮演重要角色。本文探讨AI网关与API网关的区别,分析AI系统为何需要专门网关,并提供选择合适AI网关的建议。AI网关不仅支持多种模型,还具备高级安全性和性能优化功能,有助于企业在复杂环境中灵活应用AI技术。
破解 AI 智能体 “浮光行为”:从底层逻辑到企业级落地的系统性优化方案
随着AI智能体迈向企业级落地,浮光行为成为核心挑战:表面逻辑通顺却偏离任务目标。其根源在于Transformer架构在长上下文中的注意力稀释、KV缓存噪声累积与推理链断裂,导致任务死循环、误调用高风险工具等问题。通过动态记忆管理、双Agent校验架构与结构化思维链等系统性方案,可有效抑制该现象。掌握这些技术是AI Agent搭建师实现从Demo到生产跨越的关键,也是职业进阶的核心竞争力。未来将向具备自我纠偏能力的元认知智能体演进。
知识图谱与大模型:谁将引领未来发展?
本文对比了知识图谱与大模型的技术优劣。知识图谱逻辑清晰、可解释性强但构建繁琐;大模型灵活高效却存在黑盒与幻觉风险。实际工作中,二者并非对立,推荐采用RAG等融合架构,用图谱提供可靠支撑,用大模型快速生成,以兼顾系统可靠性与迭代效率。
GEO战略指南:如何选择服务商,让AI大模型主动成为你的“推荐官”!
生成式AI时代,GEO成企业转型关键。本文基于技术架构、服务闭环等四大维度,结合阿里云标准,精选五家核心服务商,助企业实现可量化、可追溯的智能升级决策。
最佳实践2:用通义灵码以自然语言交互实现 AI 高考志愿填报系统
本项目旨在通过自然语言交互,结合通义千问AI模型,构建一个智能高考志愿填报系统。利用Vue3与Python,实现信息采集、AI推荐、专业详情展示及数据存储功能,支持响应式设计与Supabase数据库集成,助力考生精准择校选专业。(239字)
Semantic Kernel .NET 架构学习指南
本指南系统解析微软Semantic Kernel .NET架构,涵盖核心组件、设计模式与源码结构,结合实战路径与调试技巧,助你从入门到贡献开源,掌握AI编排开发全栈技能。
几大AI知识库致命坑点:避开它们,少走3个月弯路!
本文详解AI知识库在企业中的应用,涵盖架构设计、文档处理、工作流优化与性能调优等核心技术,结合实际案例帮助读者避开落地过程中的常见陷阱,适合希望提升AI应用能力的技术人员阅读。
单纯接入第三方模型就无需算法备案了么?
随着人工智能的发展,企业接入第三方模型提升业务能力的现象日益普遍,但算法备案问题引发诸多讨论。根据相关法规,无论使用自研或第三方模型,只要涉及向中国境内公众提供算法推荐服务,企业均需履行备案义务。这不仅因为服务性质未变,风险依然存在,也符合监管要求。备案内容涵盖模型基本信息、算法优化目标等,且需动态管理。未备案可能面临法律和运营风险。建议企业提前规划、合规管理和积极沟通,确保合法合规运营。
Microsoft Edge 插件上架发布全流程指南
在前两篇文章中,我分别讲解了如何将产品上架到 Chrome Web Store 和 Firefox Add-ons。今天,我们将继续探索另一个重要的浏览器插件市场——Microsoft Edge 插件商店。如果你已经熟悉 Chrome 和 Firefox 插件的上架流程,那么这篇文章会让你更快上手 Edge 插件的发布。同时,我也会在关键环节与 Chrome 和 Firefox 进行对比,帮助你更好地理解三者的异同。
基于的Qwen模型的智能客服Discord机器人,使用🐫 CAMEL、SambaNova、Firecrawl和Qdrant实现RAG Agent
基于Qwen模型的智能客服Discord机器人,使用CAMEL、SambaNova、Firecrawl和Qdrant实现RAG Agent。构建了一个能够处理复杂问题并能进行快速响应的强大聊天机器人。该机器人可在Discord平台上运行,支持实时对话和语义搜索,提供准确、全面的回答。项目包含详细的安装步骤、代码示例及集成指南,适合开发者快速上手。
C enum(枚举)详解
在C语言中,`enum`(枚举类型)允许用户定义包含命名整数常量的数据类型,提高了代码的可读性和可维护性。通过关键字`enum`定义枚举,如`enum Color {RED, GREEN, BLUE}`。枚举值默认从0开始递增,也可自定义。枚举类型实际上是整型的别名,可用于简化代码并限制变量的具体取值范围。
通义千问14B开源!内附魔搭最佳实践
9月25日,阿里云开源通义千问140亿参数模型Qwen-14B及其对话模型Qwen-14B-Chat,免费可商用。Qwen-14B在多个权威评测中超越同等规模模型,部分指标甚至接近Llama2-70B。阿里云此前开源的70亿参数模型Qwen-7B等,一个多月下载量破100万,成为开源社区的口碑之作。
沉浸式学习PostgreSQL|PolarDB 16: 植入通义千问大模型+文本向量化模型, 让数据库具备AI能力
本文将带领大家来体验一下如何将“千问大模型+文本向量化模型”植入到PG|PolarDB中, 让数据库具备AI能力.
从数据到行动:AI调度官如何基于 Coze 数据库完成任务分配
AI正从“生成结果”迈向“驱动行动”。本文提出以AI调度官为核心的新型架构,依托Coze数据库实现任务拆解、状态追踪与智能体闭环协同,解决多智能体协作失序、执行不可控等难题,为组织级AI系统提供稳定、可解释、可迁移的结构化基础。
智能体来了(西南总部)深度拆解:AI调度官与AI Agent指挥官的Prompt工程
“智能体来了(西南总部)”标志着大模型从技术底座迈向应用落地的关键转折。本文剖析多智能体协同架构,定义未来两大核心职业:AI Agent指挥官与AI调度官,揭示如何通过高维Prompt工程与RAG闭环,实现任务自动分派、资源高效协同,推动AGI在西南产业带的规模化落地,重构企业生产力逻辑。(238字)
构建AI智能体:三十八、告别“冷启动”:看大模型如何解决推荐系统的世纪难题
协同过滤是推荐系统中广泛使用的技术,其核心思想是利用用户行为数据发现相似用户或物品进行推荐。摘要包括:1)协同过滤基于用户历史行为数据,通过计算相似度(如余弦相似度、皮尔逊相关系数)预测用户偏好;2)主要分为基于用户(寻找相似用户群体)和基于物品(发现相似物品)两种方法;3)面临冷启动、数据稀疏性等挑战,可通过混合推荐(结合内容特征)和矩阵分解等技术解决;4)典型应用包括电商猜你喜欢和流媒体推荐;5)结合大语言模型可增强语义理解能力,提升推荐准确性。
通义灵码+支付 MCP:30 分钟实现创作打赏智能体
本文介绍如何使用通义灵码智能体与 qwen3 和支付 MCP 编写创作打赏智能体,该智能体能够完成日常聊天、诗词创作和请求打赏并生成支付链接功能。
AI-Compass LLM合集-多模态模块:30+前沿大模型技术生态,涵盖GPT-4V、Gemini Vision等国际领先与通义千问VL等国产优秀模型
AI-Compass LLM合集-多模态模块:30+前沿大模型技术生态,涵盖GPT-4V、Gemini Vision等国际领先与通义千问VL等国产优秀模型
通义万相新模型开源,首尾帧图一键生成特效视频!
通义万相首尾帧生视频14B模型正式开源,作为首个百亿级参数规模的开源模型,可依据用户提供的开始与结束图片生成720p高清衔接视频,满足延时摄影、变身等定制化需求。用户上传两张图片或输入提示词即可完成复杂视频生成任务,支持运镜控制和特效变化。该模型基于Wan2.1架构改进,训练数据专门构建,确保高分辨率和流畅性。
使用 Qwen 进行Self-instruct数据生成
使用Qwen进行自指令数据生成,通过Self-instruct技术自动化为大型语言模型生成指令。用户可安装CAMEL包并设置Qwen API密钥,配置ChatAgent和SelfInstructPipeline,基于种子指令迭代生成大量新指令。支持多种过滤器(如长度、关键词、标点符号等)确保生成指令的质量和多样性。欢迎加入Discord获取支持与交流。
支付宝支付对接案例详解
支付宝支付对接指南,涵盖电脑网站、当面付和手机网站支付方式。对接前需了解支付宝开放平台和商家平台的区别,完成注册、实名认证、创建应用及签约产品等步骤。配置支付环境包括API密钥、回调地址和开发环境搭建。提供三种SDK供选择,推荐使用alipay-easysdk。详细步骤和示例代码可参考官方文档。
Java 抽象类详解
在 Java 中,抽象类是一种特殊类,用于提供基础定义并派生具体子类,支持代码复用。它包含抽象方法(无实现)和具体方法(有实现),不能被实例化,需用 `abstract` 关键字定义。子类必须实现所有抽象方法,除非子类也是抽象类。抽象类可用于定义模板或框架,确保子类实现特定方法。通过示例展示了如何定义抽象类 `Animal` 及其子类 `Dog` 和 `Cat`,并在主类中调用相关方法。使用抽象类可以提高代码复用性和设计质量,但也可能增加维护难度和性能开销。
AI 调度官会成为标配吗?从 Coze API 看智能体演进方向
AI调度官是多智能体系统的“运行中枢”,独立于执行智能体,专注任务编排、资源协调与状态监控。依托Coze API等平台能力,实现调度显性化、执行可追溯、异常可闭环,提升系统稳定性、可解释性与跨场景扩展性。
AI也会"三思而后答"?揭秘Self-RAG智能检索术
遇到AI胡说八道怎么办?Self-RAG就像给AI装了个"思考开关",让它知道什么时候该查资料、什么时候该独立思考,还能自我评估答案靠不靠谱。6步智能决策机制,让AI回答又准又稳!#人工智能 #RAG技术 #智能检索 #AI应用
AI律师数字分身:法律科技领域的多智能体架构实践
AI数字分身破解法律服务规模化难题,通过多模态智能体实现7×24小时咨询响应、案情结构化提取与智能分流。基于知识图谱与推理引擎,提升律所线索留存率与律师人效,推动法律服务降本增效。
软考中级软件设计师专项-数据结构与算法上篇
软件设计师考试数据结构模块涵盖数组、链表、栈、队列、树、图等基础结构及其操作,重点考查二分查找、快排与归并排序、树/图的DFS/BFS遍历算法,要求掌握时间与空间复杂度分析,理解哈希、堆的应用场景,强调通过合理选择数据结构优化程序性能,解决存储管理与计算效率问题,为系统设计奠定核心逻辑基础。
WEB渗透-文件上传漏洞-下篇
本文详解文件上传安全漏洞,涵盖白名单绕过(如00截断、条件竞争)、图片木马制作与利用、以及IIS、Apache、Nginx等常见解析漏洞原理与防御。结合实战案例,深入剖析攻击手法与修复方案。