通义千问14B开源!内附魔搭最佳实践

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 9月25日,阿里云开源通义千问140亿参数模型Qwen-14B及其对话模型Qwen-14B-Chat,免费可商用。Qwen-14B在多个权威评测中超越同等规模模型,部分指标甚至接近Llama2-70B。阿里云此前开源的70亿参数模型Qwen-7B等,一个多月下载量破100万,成为开源社区的口碑之作。

导读


9月25日,阿里云开源通义千问140亿参数模型Qwen-14B及其对话模型Qwen-14B-Chat,免费可商用。Qwen-14B在多个权威评测中超越同等规模模型,部分指标甚至接近Llama2-70B。阿里云此前开源的70亿参数模型Qwen-7B等,一个多月下载量破100万,成为开源社区的口碑之作。

Qwen-14B是一款支持多种语言的高性能开源模型,相比同类模型使用了更多的高质量数据,整体训练数据超过3万亿Token,使得模型具备更强大的推理、认知、规划和记忆能力。


Qwen-14B-Chat 是在基座模型上经过精细SFT得到的对话模型。借助基座模型强大性能,Qwen-14B-Chat生成内容的准确度大幅提升,也更符合人类偏好,内容创作上的想象力和丰富度也有显著扩展。


用户可从魔搭社区直接下载模型,也可通过阿里云灵积平台访问和调用Qwen-14B和Qwen-14B-Chat。阿里云为用户提供包括模型训练、推理、部署、精等在内的全方位服务,以下是魔搭的最佳实践。



环境配置与安装

  1. python 3.8及以上版本
  2. pytorch 1.12及以上版本,推荐2.0及以上版本
  3. 建议使用CUDA 11.4及以上(GPU用户需考虑此选项)


使用步骤

本文在PAI-DSW的环境配置下运行 (可单卡运行, 显存最低要求11G)



创空间体验

模型零代码创空间体验地址:

https://modelscope.cn/studios/qwen/Qwen-14B-Chat-Demo


效果展示:


  • 国际惯例自我认知



  • 写作创作


  • 知识常识


  • 数学


  • 代码


  • 安全



模型链接和下载Qwen-14B系列模型现已在ModelScope社区开源,包括:


Qwen-14B-Chat

模型链接:https://modelscope.cn/models/qwen/Qwen-14B-Chat


Qwen-14B

模型链接:https://modelscope.cn/models/qwen/Qwen-14B


Qwen-14B-Chat-Int4

模型链接:https://www.modelscope.cn/models/qwen/Qwen-14B-Chat-Int4

社区支持直接下载模型的repo:

from modelscope.hub.snapshot_download import snapshot_download
model_dir = snapshot_download('qwen/Qwen-14B-Chat', 'v1.0.0')




模型推理


依赖项:

Qwen-14B-Chat-Int4依赖项:


pip install "modelscope>=1.9.1" auto-gptq optimum

Qwen-14B-Chat和Qwen-14B依赖项:


pip install "modelscope>=1.9.1"


推理代码:

Qwen-14B-Chat-Int4可在魔搭社区免费GPU算力(单卡A10)运行:

from modelscope import AutoTokenizer, AutoModelForCausalLM, snapshot_download
model_dir = snapshot_download("qwen/Qwen-14B-Chat-Int4",revision = 'v1.0.0')
# Note: The default behavior now has injection attack prevention off.
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    model_dir,
    device_map="auto",
    trust_remote_code=True
).eval()
response, history = model.chat(tokenizer, "你好", history=None)
print(response)
# 你好!很高兴为你提供帮助。


资源消耗:


Qwen-14B-Chat模型推理代码

from modelscope import AutoModelForCausalLM, AutoTokenizer, snapshot_download
from modelscope import GenerationConfig
model_dir = snapshot_download('qwen/Qwen-14B-Chat', revision='v1.0.0')
# Note: The default behavior now has injection attack prevention off.
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
# use bf16
# model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, bf16=True).eval()
# use cpu only
# model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="cpu", trust_remote_code=True).eval()
# use auto mode, automatically select precision based on the device.
model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True).eval()
# Specify hyperparameters for generation
model.generation_config = GenerationConfig.from_pretrained(model_dir, trust_remote_code=True) # 可指定不同的生成长度、top_p等相关超参
# 第一轮对话 1st dialogue turn
response, history = model.chat(tokenizer, "你好", history=None)
print(response)
# 你好!很高兴为你提供帮助。
# 第二轮对话 2nd dialogue turn
response, history = model.chat(tokenizer, "给我讲一个年轻人奋斗创业最终取得成功的故事。", history=history)
print(response)
# 这是一个关于一个年轻人奋斗创业最终取得成功的故事。
# 故事的主人公叫李明,他来自一个普通的家庭,父母都是普通的工人。从小,李明就立下了一个目标:要成为一名成功的企业家。
# 为了实现这个目标,李明勤奋学习,考上了大学。在大学期间,他积极参加各种创业比赛,获得了不少奖项。他还利用课余时间去实习,积累了宝贵的经验。
# 毕业后,李明决定开始自己的创业之路。他开始寻找投资机会,但多次都被拒绝了。然而,他并没有放弃。他继续努力,不断改进自己的创业计划,并寻找新的投资机会。
# 最终,李明成功地获得了一笔投资,开始了自己的创业之路。他成立了一家科技公司,专注于开发新型软件。在他的领导下,公司迅速发展起来,成为了一家成功的科技企业。
# 李明的成功并不是偶然的。他勤奋、坚韧、勇于冒险,不断学习和改进自己。他的成功也证明了,只要努力奋斗,任何人都有可能取得成功。
# 第三轮对话 3rd dialogue turn
response, history = model.chat(tokenizer, "给这个故事起一个标题", history=history)
print(response)
# 《奋斗创业:一个年轻人的成功之路》


资源消耗



模型微调和微调后推理


微调代码开源地址:

clone swift仓库并安装swift

git clone https://github.com/modelscope/swift.git
cd swift
pip install .
cd examples/pytorch/llm


单卡A10 QLoRA微调案例

模型微调脚本 (qlora)

# Experimental environment: A10
# 17GB GPU memory
CUDA_VISIBLE_DEVICES=0 \
python src/llm_sft.py \
    --model_type qwen-14b \
    --sft_type lora \
    --template_type default-generation \
    --dtype bf16 \
    --output_dir output \
    --dataset dureader-robust-zh \
    --train_dataset_sample -1 \
    --num_train_epochs 1 \
    --max_length 2048 \
    --quantization_bit 4 \
    --bnb_4bit_comp_dtype bf16 \
    --lora_rank 8 \
    --lora_alpha 32 \
    --lora_dropout_p 0. \
    --lora_target_modules ALL \
    --gradient_checkpointing true \
    --batch_size 1 \
    --weight_decay 0. \
    --learning_rate 1e-4 \
    --gradient_accumulation_steps 16 \
    --max_grad_norm 0.5 \
    --warmup_ratio 0.03 \
    --eval_steps 100 \
    --save_steps 100 \
    --save_total_limit 2 \
    --logging_steps 10 \
    --use_flash_attn false \
    --push_to_hub false \
    --hub_model_id qwen-14b-qlora \
    --hub_private_repo true \
    --hub_token 'your-sdk-token' \


模型微调后的推理脚本

# If you want to merge LoRA weight and save it, you need to set `--merge_lora_and_save true`.
CUDA_VISIBLE_DEVICES=0 \
python src/llm_infer.py \
    --model_type qwen-14b \
    --sft_type lora \
    --template_type default-generation \
    --dtype bf16 \
    --ckpt_dir "output/qwen-14b/vx_xxx/checkpoint-xxx" \
    --eval_human false \
    --dataset dureader-robust-zh \
    --max_length 2048 \
    --quantization_bit 4 \
    --bnb_4bit_comp_dtype bf16 \
    --use_flash_attn false \
    --max_new_tokens 1024 \
    --temperature 0.9 \
    --top_k 20 \
    --top_p 0.9 \
    --do_sample true \
    --merge_lora_and_save false \


微调的可视化结果

训练损失:


资源消耗:

Qwen-14B使用 qlora 的方式训练的显存占用如下,大约在17G. (quantization_bit=4, batch_size=1, max_length=1024)



双卡A100 LoRA微调案例:

模型微调脚本 (lora+ddp)

# Experimental environment: 2 * A100
# 2 * 55GB GPU memory
nproc_per_node=2
CUDA_VISIBLE_DEVICES=0,1 \
torchrun \
    --nproc_per_node=$nproc_per_node \
    --master_port 29500 \
    src/llm_sft.py \
    --model_type qwen-14b-chat \
    --sft_type lora \
    --template_type chatml \
    --dtype bf16 \
    --output_dir output \
    --dataset damo-agent-mini-zh \
    --train_dataset_sample 20000 \
    --num_train_epochs 1 \
    --max_length 4096 \
    --lora_rank 8 \
    --lora_alpha 32 \
    --lora_dropout_p 0. \
    --lora_target_modules ALL \
    --gradient_checkpointing true \
    --batch_size 1 \
    --weight_decay 0. \
    --learning_rate 1e-4 \
    --gradient_accumulation_steps $(expr 32 / $nproc_per_node) \
    --max_grad_norm 0.5 \
    --warmup_ratio 0.03 \
    --eval_steps 100 \
    --save_steps 100 \
    --save_total_limit 2 \
    --logging_steps 10 \
    --use_flash_attn true \
    --push_to_hub false \
    --hub_model_id qwen-14b-chat-qlora \
    --hub_private_repo true \
    --hub_token 'your-sdk-token' \


模型微调后的推理脚本

# If you want to merge LoRA weight and save it, you need to set `--merge_lora_and_save true`.
CUDA_VISIBLE_DEVICES=0 \
python src/llm_infer.py \
    --model_type qwen-14b-chat \
    --sft_type lora \
    --template_type chatml \
    --dtype bf16 \
    --ckpt_dir "output/qwen-14b-chat/vx_xxx/checkpoint-xxx" \
    --eval_human false \
    --dataset damo-agent-mini-zh \
    --max_length 4096 \
    --use_flash_attn true \
    --max_new_tokens 2048 \
    --temperature 0.9 \
    --top_k 20 \
    --top_p 0.9 \
    --do_sample true \
    --merge_lora_and_save false \



微调的可视化结果:

训练损失



资源消耗:

Qwen-14B-Chat使用 lora+ddp 的方式训练的显存占用如下,大约在55G. (quantization_bit=4, batch_size=1, max_length=4096)


最后,欢迎关注通义千问开源的开发者小伙伴们入群沟通交流~



点击阅读原文,直达创空间体验

https://modelscope.cn/studios/qwen/Qwen-14B-Chat-Demo/summary

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
人工智能 PyTorch 算法框架/工具
|
3月前
|
编解码 JSON 自然语言处理
通义千问重磅开源Qwen2.5,性能超越Llama
击败Meta,阿里Qwen2.5再登全球开源大模型王座
2927 19
|
3月前
|
存储 关系型数据库 分布式数据库
GraphRAG:基于PolarDB+通义千问+LangChain的知识图谱+大模型最佳实践
本文介绍了如何使用PolarDB、通义千问和LangChain搭建GraphRAG系统,结合知识图谱和向量检索提升问答质量。通过实例展示了单独使用向量检索和图检索的局限性,并通过图+向量联合搜索增强了问答准确性。PolarDB支持AGE图引擎和pgvector插件,实现图数据和向量数据的统一存储与检索,提升了RAG系统的性能和效果。
|
3月前
|
编解码 自然语言处理 机器人
通义千问Qwen2-VL开源,API可直接调用!
通义千问宣布开源第二代视觉语言模型Qwen2-VL,并推出2B、7B两个尺寸及其量化版本模型。同时,旗舰模型Qwen2-VL-72B的API已上线阿里云百炼平台,用户可直接调用。
1201 9
|
人工智能 编解码 文字识别
通义千问720亿参数模型开源,适配企业级、科研级高性能应用
通义千问720亿参数模型开源,适配企业级、科研级高性能应用
1849 0
|
2月前
|
存储 关系型数据库 分布式数据库
GraphRAG:基于PolarDB+通义千问+LangChain的知识图谱+大模型最佳实践
本文介绍了一种结合知识图谱与大型语言模型(LLM)的GraphRAG系统,利用PolarDB、通义千问及LangChain实现。知识图谱通过结构化信息、语义理解和推理等功能,增强了信息检索与自然语言处理效果。PolarDB具备图引擎与向量检索能力,适配知识图谱存储与查询。通义千问处理自然语言,LangChain则整合模型与应用。实战步骤包括环境准备、数据库配置与数据导入,并通过实例展示了图谱与向量联合检索的优越性,提升了问答系统的准确性和实用性。
|
4月前
|
自然语言处理 开发者
通义千问继续开源!阿里云38篇论文被顶会ACL 2024录用
通义千问继续开源!阿里云38篇论文被顶会ACL 2024录用
131 8
|
7月前
|
自然语言处理 Swift
千亿大模型来了!通义千问110B模型开源,魔搭社区推理、微调最佳实践
近期开源社区陆续出现了千亿参数规模以上的大模型,这些模型都在各项评测中取得杰出的成绩。今天,通义千问团队开源1100亿参数的Qwen1.5系列首个千亿参数模型Qwen1.5-110B,该模型在基础能力评估中与Meta-Llama3-70B相媲美,在Chat评估中表现出色,包括MT-Bench和AlpacaEval 2.0。
|
7月前
|
人工智能 自然语言处理 算法
CodeFuse成功支持通义千问算法大赛,评测方案已开源
首届通义千问AI挑战赛成功举办,CodeFuse 为大赛提供技术支持,模型微调框架 MFTCoder 和 CodeFuseEval 评测框架为大赛保驾护航,助力大赛圆满完成。我们基于leetcode 阿里和蚂蚁最新面试题库建设了“模型赛马”在线打榜的评测方案,目前验证集已作为 CodefuseEval 的一项任务在 Github 上开放,欢迎大家下载使用。
151 1

热门文章

最新文章