软考中级软件设计师专项-软件工程专题上篇
本篇章精讲软考中级软件设计师“软件工程”核心内容,涵盖CMM/CMMI成熟度模型、瀑布/螺旋/敏捷等开发模型、系统测试与维护策略及McCabe复杂度等考点,结合例题解析,助力构建全生命周期知识体系,精准突破考试重难点。
软考中级软件设计师专项-数据库篇
本资料涵盖数据库核心概念,包括结构数据模型(层次、网状、关系模型)、三级模式结构(概念模式、外模式、内模式)、关系模型术语与完整性约束(实体、参照完整性)、笛卡尔积及关系代数操作(投影、选择、连接)、SQL语言基础与查询优化、关系模式规范化(范式1NF、2NF、3NF、BCNF)、E-R图设计与数据库设计流程、事务管理(ACID特性)、并发控制与分布式数据库等内容,适合数据库学习与考试复习。
零成本打造智能服务端:MCP采样的降本增效实践
本文介绍MCP采样机制,突破传统单向调用模式,实现服务器与客户端LLM的双向协作,提升扩展性、降低成本,支持灵活模型选择。通过FastMCP框架,打造高效分布式AI计算架构。
释放Qwen3-Coder潜力:Bolt+AnalyticDB Supabase,打造真正的生产力工具
阿里云发布Qwen3-Coder,具备卓越自主编码能力,支持超长上下文窗口与工具调用,结合Bolt与AnalyticDB Supabase,实现高效开发。
WebSailor:探索 WebAgent的超人类推理能力
通义实验室推出WebSailor方案,通过创新的post-training方法显著提升开源模型在复杂网页推理任务中的表现。该方案包括合成高不确定性数据、多轮工具调用轨迹重构及强化学习算法DUPO应用,在多个评测中展现优越性能。
Arthas redefine(加载外部的.class文件,redefine到JVM里 )
Arthas redefine(加载外部的.class文件,redefine到JVM里 )
AI大模型进阶系列(01)看懂AI大模型的主流技术 | AI对普通人的本质影响是什么
本文分享了作者在AI领域的创作心得与技术见解,涵盖从获奖经历到大模型核心技术的深入解析。内容包括大模型推理过程、LLM类型、prompt工程参数配置及最佳实践,以及RAG技术和模型微调的对比分析。同时探讨了AI对社会和个人的影响,特别是在deepseek出现后带来的技术革新与应用前景。适合希望了解AI大模型技术及其实际应用的读者学习参考。
个人信息保护合规审计管理办法
《个人信息保护合规审计管理办法》由国家互联网信息办公室于2024年5月20日审议通过,自2025年5月1日起施行。该办法旨在规范个人信息保护合规审计活动,确保个人信息处理者遵守相关法律法规,保护个人权益。主要内容包括:个人信息处理者的合规审计义务、特定情况下强制审计要求、专业机构的资质与责任、以及对违规行为的处罚措施等。此外,还明确了处理超过1000万人个人信息的企业需每两年至少进行一次合规审计,并对敏感信息处理、未成年人信息保护、跨境数据传输等方面提出了具体要求。
Ai好记全面接入DeepSeek大模型!重塑知识管理新体验
Ai好记融合DeepSeek大模型,带来知识管理新纪元。视频秒变知识胶囊,外语资料自动转母语,一键构建思维导图。六大核心能力包括结构化笔记、AI播客、全平台解析等,全面提升学习和工作效率。立即登录aihaoji.com体验!
不属于五种算法是否无需备案?一文读懂算法备案的真相
在数字化时代,算法成为互联网服务的核心技术。为应对算法歧视、大数据杀熟等问题,我国出台了算法备案制度,规范算法使用,保护用户权益。五种常见算法(生成合成、个性化推送、排序精选、检索过滤、调度决策)需备案,但其他类型算法在特定情况下也需备案,如涉及舆论属性或社会动员能力。未备案将面临法律责任,企业应严格遵守规定,确保合规运营。算法备案不仅是法律要求,更是企业对社会责任的体现。
支付宝支付对接案例详解
支付宝支付对接指南,涵盖电脑网站、当面付和手机网站支付方式。对接前需了解支付宝开放平台和商家平台的区别,完成注册、实名认证、创建应用及签约产品等步骤。配置支付环境包括API密钥、回调地址和开发环境搭建。提供三种SDK供选择,推荐使用alipay-easysdk。详细步骤和示例代码可参考官方文档。
通义千问 Qwen 系列的 Agent 方向探索
通义千问Qwen系列在AI领域展现了强大的Agent方向探索能力,包括灵活的Tool调用、单/多Agent场景实践等,通过丰富的代码示例展示了其在文本生成、信息检索、任务自动化及专业领域应用等方面的优势,为复杂应用场景提供了多元且实用的解决方案。
基于Qwen2.5的大规模ESG数据解析与趋势分析多Agent系统设计
2022年中国上市企业ESG报告数据集,涵盖制造、能源、金融、科技等行业,通过Qwen2.5大模型实现报告自动收集、解析、清洗及可视化生成,支持单/多Agent场景,大幅提升ESG数据分析效率与自动化水平。
谈谈Function Calling
Function Calling赋予大语言模型调用外部工具的能力,弥补其缺乏行动力、信息滞后等缺陷。它像“指挥家”般,理解用户意图,选择合适的工具执行操作,并将结果反馈给用户,从而连接虚拟与现实。这一机制让大语言模型如虎添翼,更好地服务于人类。
Github 2024-06-10开源项目周报 Top15
根据Github Trendings的统计,本周(2024年6月10日统计)共有15个项目上榜。按开发语言分类,上榜项目数量如下:Python 8项,Jupyter Notebook 和 Go 各2项,C++、Shell、Lua 和 JavaScript 各1项。亮点项目包括Python-100天从新手到大师、Syncthing开源同步工具、初学者的生成式人工智能(第2版)等。这些项目涵盖了代码教育、文件同步、数据分析等多个领域。
AI 提示词模板相关的架构设计
现在很多企业纷纷研发大语言模型以解决业务问题。提示词在与模型交互中起到关键作用。为优化提示词模板的修改、提高渲染效率及确保安全性,架构设计注重可修改性、安全性、可靠性和性能。设计包括:将提示词存储在OSS以方便修改和版本控制;使用本地缓存提升读取性能;模板引擎增强灵活性;秘钥安全存储在加密系统中;并通过配置中心动态调整。此设计旨在提供高效、安全且可靠的AI交互体验等。
【nlp-with-transformers】|Transformers中的generate函数解析
今天社群中的小伙伴面试遇到了一个问题,如何保证生成式语言模型在同样的输入情况下可以保证同样的输出。 这里面造成问题的因素有两个方面: 一个方面是在forward过程中参数的计算出现了差异,这种情况一般发生在游戏显卡中,游戏显卡无法保证每一次底层算子计算都是成功的,也没有办法保证同输入同输出,这里我们就需要采用具有ecc内存纠错机智的专用显卡用来解决相关的问题。
VTJ.PRO如何利用AI实现低代码开发
VTJ.PRO深度集成AI,实现设计稿转代码、自然语言生成组件等功能,显著提升低代码开发效率。支持双向代码穿梭、企业级工程化与多模型协同决策,兼顾开发速度与代码自由度,助力项目周期大幅压缩。
AIGEO助力企业内容传播
AIGEO是一款低成本、高效率的内容优化工具,助力企业提升曝光与转化。适配多行业,支持AI收录推荐,精准匹配用户搜索意图,合规安全,推动小微企业数字化转型。(238字)
贪心算法:部分背包问题深度解析
该Java代码基于贪心算法求解分数背包问题,通过按单位价值降序排序,优先装入高价值物品,并支持部分装入。核心包括冒泡排序优化、分阶段装入策略及精度控制,体现贪心选择性质,适用于可分割资源的最优化场景。
如何在通义灵码里使用 MCP 能力
通义灵码支持MCP工具使用,通过模型自主规划实现工具调用,深度集成魔搭MCP广场,涵盖2400+热门服务。提供STDIO和SSE两种通信模式,适用于不同场景需求。用户可通过智能体模式调用MCP工具,完成如网页内容抓取、天气查询等任务。文档详细介绍了服务配置、使用流程及常见问题解决方法,助力开发者高效拓展AI编码能力。
释放数据潜力:利用 MCP 资源让大模型读懂你的服务器
MCP(Model Control Protocol)资源系统是将服务器数据暴露给客户端的核心机制,支持文本和二进制两种类型资源。资源通过唯一URI标识,客户端可通过资源列表或模板发现资源,并使用`resources/read`接口读取内容。MCP还支持资源实时更新通知及订阅机制,确保动态数据的及时性。实现时需遵循最佳实践,如清晰命名、设置MIME类型和缓存策略,同时注重安全性,包括访问控制、路径清理和速率限制等。提供的示例代码展示了如何用JavaScript和Python实现资源支持。
AI 解决方案的安全控制设计与实施
AI 解决方案的安全控制设计与实施涵盖数据安全、模型安全、系统安全及合规治理四大领域。通过数据加密、访问控制、差分隐私等手段保障数据安全;采用对抗训练、联邦学习确保模型安全;利用容器化部署、可信执行环境维护系统安全;并遵循 GDPR 等法规,进行红队测试和应急响应,确保 AI 全生命周期的安全性与合规性。
Java工程师如何理解张量?
刚接触AI和PyTorch,理解“张量(Tensor)”是入门关键。张量可类比为Java中的多维数组,但更强大,尤其在AI领域支持GPU加速、自动求导等特性。它不仅能高效存储数据,还能进行复杂运算,是深度学习的核心数据结构。掌握张量的维度、数据类型及GPU加速特性,对学习PyTorch至关重要。
多态性在面向对象编程中的应用场景
多态性是面向对象编程的核心特性之一,允许使用同一接口表示不同类型的对象,提高代码的灵活性和可扩展性。常见应用场景包括:方法重写、接口实现、抽象类等,通过多态可以轻松管理复杂系统,实现软件组件的松耦合。
基于Qwen2大模型实现的中药智能化筛选助手
本文介绍了利用大语言模型微调技术在中药方剂智能化筛选与优化中的应用。项目涵盖微调环境搭建、数据预处理、智能体构建及效果评估等环节,展示了模型在生成新中药方剂上的创新能力和实用性。
基于qwen2.5开源大模型 处理 环境、社会及治理 相关资料
基于Qwen-2.5开源大模型,本方案旨在处理环境、社会及治理(ESG)相关资料,涵盖数据分析、决策辅助和报告生成等任务。方案详细描述了从数据准备、模型功能设计到部署优化的全过程,并列举了多种应用场景,如企业合规审查、投资评估支持等,旨在为企业、机构和研究者提供全面的ESG资料处理解决方案。
人工智能赋能个案管理服务的应用与实践
通义千问2.5作为新一代人工智能模型,正在为医疗健康领域的个案管理服务带来革命性变革。本文探讨了该技术在患者管理、MDT多学科协作、整体评估、电子病历管理、随访管理和复诊提醒等方面的应用,展示了其在提升医疗服务质量和管理效率方面的显著成效。
前端大模型应用笔记(五):大模型基础能力大比拼-计数篇-通义千文 vs 文心一言 vs 智谱 vs 讯飞vsGPT
本文对比测试了通义千文、文心一言、智谱和讯飞等多个国产大模型在处理基础计数问题上的表现,特别是通过链式推理(COT)提示的效果。结果显示,GPTo1-mini、文心一言3.5和讯飞4.0Ultra在首轮测试中表现优秀,而其他模型在COT提示后也能显著提升正确率,唯有讯飞4.0-Lite表现不佳。测试强调了COT在提升模型逻辑推理能力中的重要性,并指出免费版本中智谱GLM较为可靠。
【Prompt Engineering提示工程技术:思维树 (ToT)、检索增强生成 (RAG)、自动推理并使用工具 (ART)】
思维树(ToT)框架,旨在解决复杂任务,通过构建一棵思维树,利用语言模型生成并评估中间步骤,结合搜索算法(如广度优先搜索)进行系统探索。ToT在不同任务中需定义思维步骤及候选数量,如“算24游戏”需三分步骤,每步评估可行性。实验表明,ToT显著优于其他提示方法。此外,ToT框架可结合强化学习不断进化,提升解决复杂问题的能力。
Github 2024-08-26 开源项目周报Top15
根据Github Trendings的统计,本周共有15个项目上榜。以下是按开发语言汇总的项目数量:Python项目8个,TypeScript、C++ 和 Rust 项目各2个,Jupyter Notebook、Shell、Swift 和 Dart 项目各1个。其中,RustDesk 是一款用 Rust 编写的开源远程桌面软件,可作为 TeamViewer 的替代品;Whisper 是一个通用的语音识别模型,基于大规模音频数据集训练而成;初学者的生成式人工智能(第2版)则是由微软提供的18门课程,教授构建生成式AI应用所需的知识。
用通义Qwen大模型和Streamlit构建 ChatPDF 应用(附代码)
本文介绍了如何利用通义千问Qwen大模型构建一个本地ChatPDF AI助手,该助手允许用户上传PDF并与之对话,确保文档隐私安全。项目通过阿里云百炼平台获取Qwen-Long模型,支持多种文档格式。现实现步骤包括导入库、加载环境变量、初始化客户端、编码器、页面与对话管理、文件上传、选择模型、获取AI回答及计算费用,主函数整合这些功能,提供交互体验。
使用Git LFS从Hugging Face下载大型语言模型
Hugging Face作为主流的模型库,提供了大量预训练模型,但这些模型的大尺寸使得直接下载可能会遇到困难。Git LFS(Large File Storage)作为Git的一个扩展,为我们提供了一个解决方案