阿里云零门槛、轻松部署您的专属 DeepSeek模型体验测试
DeepSeek R1是基于Transformer架构的先进大规模深度学习模型,2025年1月20日发布并开源,遵循MIT License。它在自然语言处理等任务上表现出色,高效提取特征,缩短训练时间。阿里云推出的满血版方案解决了服务器压力问题,提供100万免费token,云端部署降低成本,用户可快速启动体验。虽然回答速度有待提升,但整体表现优异,备受关注。

通义万相2.1:VBench榜单荣登第一!阿里通义万相最新视频生成模型,支持生成1080P长视频
万相2.1是阿里通义万相最新推出的视频生成模型,支持1080P无限长视频生成,具备复杂动作展现、物理规律还原、艺术风格转换等功能。
通义智文:文档应用赋能千行百业
通义智文是阿里巴巴推出的大规模文档处理技术体系,旨在提升生产力效率。最初作为阅读工具发布,现已发展为涵盖文档解析、理解、生成等多方面的技术平台。通义智文支持超长文档处理、多模态文本解析,并在法律、教育等领域提供专业服务。其创新算法如VGT版面分析和Layout-LM多模态模型,显著提升了文档处理精度。应用场景包括PPT创作、故事绘本生成及法律文书审查等,赋能千行百业。
通义千问 Qwen 系列的 Agent 方向探索
通义千问Qwen系列在AI领域展现了强大的Agent方向探索能力,包括灵活的Tool调用、单/多Agent场景实践等,通过丰富的代码示例展示了其在文本生成、信息检索、任务自动化及专业领域应用等方面的优势,为复杂应用场景提供了多元且实用的解决方案。
大模型代码能力体验报告之贪吃蛇小游戏《一》:Claude.ai篇 - 生成、预览和快速部署的serverless一条龙
本文介绍了通过Claude.ai生成并优化Web版贪吃蛇游戏的过程,展示了其强大的代码生成功能及用户友好的界面设计。从初始版本的快速生成到根据用户反馈调整游戏速度,再到提供多种实用工具如文件管理、版本控制和一键部署,Claude.ai不仅是一个代码助手,更像是一个全面的serverless开发平台。文中还呼吁国内厂商关注此类技术的发展。
大模型体验体验报告:OpenAI-O1内置思维链和多个llm组合出的COT有啥区别?传统道家理论+中学生物理奥赛题测试,名不虚传还是名副其实?
一个月前,o1发布时,虽然让人提前体验,但自己并未进行测试。近期终于有机会使用,却仍忘记第一时间测试。本文通过两个测试案例展示了o1的强大能力:一是关于丹田及练气的详细解答,二是解决一道复杂的中学生物理奥赛题。o1的知识面广泛、推理迅速,令人印象深刻。未来,或许可以通过赋予o1更多能力,使其在更多领域发挥作用。如果你有好的测试题,欢迎留言,一起探索o1的潜力。
解锁企业智能化的关键力量
【10月更文挑战第5天】随着人工智能(AI)技术的不断发展,大规模预训练模型正逐渐成为推动各行业智能化转型的核心动力。阿里云通义大模型作为阿里云推出的企业级AI解决方案,通过深度学习、自然语言处理(NLP)、计算机视觉(CV)等前沿技术,助力企业在多样化场景中实现创新和突破。本文将详细介绍阿里云通义大模型的技术原理、应用场景及其在企业智能化转型中的独特优势,帮助企业更好地理解和利用这一前沿技术。

运维工程师必备的摸鱼神器:阿里云智能助手OS Copilot
OS Copilot 概述与体验评测摘要 阿里云的OS Copilot是一款基于大模型的智能操作系统助手,作为高级运维工程师,体验者发现它在系统诊断和性能优化上尤其有用,简化了如重置ECS密码和安全组配置等任务,提升了工作效率。 OS Copilot的易用性和安全性得到肯定,操作手册详细且交互性强,减少了用户在不同页面间切换的需要。在辅助编程方面,它能帮助非专业开发者编写和理解代码,对运维工作中的开发技能补充有很大帮助。与GitHub Copilot等产品相比,OS Copilot的独特之处在于结合了Linux操作的支持。
乱用继承导致的类爆炸
摘要(Markdown格式): 了解**复杂度守恒定律**,源于1984年,指出应用的复杂性无法消除,只能转移。在探究设计模式时,发现了**桥接模式**。桥接模式通过组合而非继承处理多维度变化,避免类爆炸问题。当图形颜色和类型变化时,原本的抽象类和实现类会导致大量类产生。通过桥接模式优化,将颜色和形状解耦,实现了更灵活的结构。

用通义Qwen大模型和Streamlit构建 ChatPDF 应用(附代码)
本文介绍了如何利用通义千问Qwen大模型构建一个本地ChatPDF AI助手,该助手允许用户上传PDF并与之对话,确保文档隐私安全。项目通过阿里云百炼平台获取Qwen-Long模型,支持多种文档格式。现实现步骤包括导入库、加载环境变量、初始化客户端、编码器、页面与对话管理、文件上传、选择模型、获取AI回答及计算费用,主函数整合这些功能,提供交互体验。
详解AI作画算法原理
AI作画算法运用深度学习和生成对抗网络(GAN),通过学习大量艺术作品,模拟艺术家风格。卷积神经网络(CNN)提取图像特征,GAN中的生成器和判别器通过对抗训练生成艺术图像。循环神经网络和注意力机制可提升作品质量。这种技术开创了艺术创作新途径。

大模型自动生成并运行代码的体验与优化
随着近两年大模型的不断发展,它们在各个领域展示出了惊人的能力,可以说是在各个领域到了“开花结果”的阶段。比如最近技术圈比较火的阿里云的通义千问已经可以自己写代码、跑代码了,作为开发者,我觉得这种能力不仅提高了开发效率,还推动了编程实践向更高层次的转变和发展。但是,在使用大模型自动生成代码时,我们也会面临一些挑战,其中之一是代码可能会曲解开发者的需求。那么本文就来分享一下个个人的体验以及如何优化这种情况。

【奶奶看了都会】ComfyUI+SVD制作AI视频教程,附效果演示
AI一天,人间一年。大家好啊,我是小卷,最近AI绘画又发展出一些新玩意了,小卷因为工作的关系有一个月没关注AI的发展了,都有点跟不上版本节奏了。。。

沉浸式学习PostgreSQL|PolarDB 16: 植入通义千问大模型+文本向量化模型, 让数据库具备AI能力
本文将带领大家来体验一下如何将“千问大模型+文本向量化模型”植入到PG|PolarDB中, 让数据库具备AI能力.
使用 LangChain 和 Node.js 提取数据
在本篇文章中,将分享如何使用 LangChain(一个用于构建 AI 驱动应用程序的框架)通过 GPT 和 Node.js 提取和生成结构化 JSON 数据

通义大模型:打造更智能、更灵活的自然语言处理技术
大家好,今天我想向大家介绍一款备受瞩目的自然语言处理技术——通义大模型。作为一种基于深度学习的人工智能技术,通义大模型能够模拟人类的思维方式,实现更智能、更灵活的自然语言处理,为我们的生活和工作带来了极大的便利。
豆蔻妇科大模型宣布在妇产科正高考试中成绩超越GPT-5,同时正式开放试用
在钉钉10周年发布会上,壹生检康CEO王强宇宣布其自主研发的豆蔻妇科大模型(doukou.ai)在国家妇产科卫生高级职称笔试考试中以64.94分超越GPT-5的52.59分,并开放网页版试用。这一成绩展现了国产医疗AI在专业化赛道的快速进步和垂直行业大模型的高应用价值,为AI赋能医疗临床提供了新样本。
AI 解决方案的安全控制设计与实施
AI 解决方案的安全控制设计与实施涵盖数据安全、模型安全、系统安全及合规治理四大领域。通过数据加密、访问控制、差分隐私等手段保障数据安全;采用对抗训练、联邦学习确保模型安全;利用容器化部署、可信执行环境维护系统安全;并遵循 GDPR 等法规,进行红队测试和应急响应,确保 AI 全生命周期的安全性与合规性。

钉钉项目 Teambition AI 能力重塑项目管理100种可能!
钉钉项目Teambition AI迎来重磅升级,通义千问与DeepSeek两大模型助力AI项目管理。从项目规划、任务创建到执行建议、字段管理,再到周报总结和数据分析,Teambition AI贯穿项目全流程,重塑项目管理100种可能。AI技术赋能项目管理智能化,提升团队协作效率,确保项目进度精准把控,让任务分配、资源调度和风险管理更加轻松高效。

免费+数据安全!手把手教你在PC跑DeepSeek-R1大模型,小白也能秒变AI大神!
本地部署AI模型(如DeepSeek R1)保障数据隐私、节省成本且易于控制,通过Ollama平台便捷安装与运行,结合可视化工具(如Chatbox)及Python代码调用,实现高效、个性化的AI应用开发与使用。
【算法合规新时代】企业如何把握“清朗·网络平台算法典型问题治理”专项行动?
在数字化时代,算法推动社会发展,但也带来了信息茧房、大数据杀熟等问题。中央网信办发布《关于开展“清朗·网络平台算法典型问题治理”专项行动的通知》,针对六大算法问题进行整治,明确企业需落实算法安全主体责任,建立健全审核与管理制度,并对算法进行全面审查和备案。企业应积极自查自纠,确保算法合规透明,防范风险,迎接新机遇。

操作系统智能助手OS Copilot新功能
作为一名公司的研发人员,我虽主要从事前后端开发,但也对云服务有所了解。在安装并体验OS Copilot的过程中,我深刻感受到其强大功能和便捷性。安装过程顺利直观,-t功能可快速测试命令输出,节省时间并提供有益信息;-f功能提升了批量任务处理和调试脚本的效率;管道功能虽有改进空间,但整体显著提升工作效率,特别是在处理复杂脚本和自动化任务时,减少了错误率。我相信OS Copilot未来潜力巨大,期待其进一步优化。
多态性在面向对象编程中的应用场景
多态性是面向对象编程的核心特性之一,允许使用同一接口表示不同类型的对象,提高代码的灵活性和可扩展性。常见应用场景包括:方法重写、接口实现、抽象类等,通过多态可以轻松管理复杂系统,实现软件组件的松耦合。
前端架构思考 :专注于多框架的并存可能并不是唯一的方向 — 探讨大模型时代前端的分层式微前端架构
随着前端技术的发展,微前端架构成为应对复杂大型应用的流行方案,允许多个团队使用不同技术栈并将其模块化集成。然而,这种设计在高交互性需求的应用中存在局限,如音视频处理、AI集成等。本文探讨了传统微前端架构的不足,并提出了一种新的分层式微前端架构,通过展示层与业务层的分离及基于功能的横向拆分,以更好地适应现代前端需求。
使用通义灵码提升Python开发效率:从熟悉代码到实现需求的全流程体验
作为一名Python开发者,我最近开始使用通义灵码作为开发辅助工具。它显著提高了我的工作效率,特别是在理解和修改复杂代码逻辑方面。通过AI编码助手,我能够在短时间内快速上手新项目,实现新需求,并进行代码优化,整体效率提升了60%以上。通义灵码不仅加快了代码生成速度,还增强了代码的健壮性和稳定性。
拿下奇怪的前端报错(一):报错信息是一个看不懂的数字数组Buffer(475) [Uint8Array],让AI大模型帮忙解析
本文介绍了前端开发中遇到的奇怪报错问题,特别是当错误信息不明确时的处理方法。作者分享了自己通过还原代码、试错等方式解决问题的经验,并以一个Vue3+TypeScript项目的构建失败为例,详细解析了如何从错误信息中定位问题,最终通过解读错误信息中的ASCII码找到了具体的错误文件。文章强调了基础知识的重要性,并鼓励读者遇到类似问题时不要慌张,耐心分析。

前端大模型应用笔记(五):大模型基础能力大比拼-计数篇-通义千文 vs 文心一言 vs 智谱 vs 讯飞vsGPT
本文对比测试了通义千文、文心一言、智谱和讯飞等多个国产大模型在处理基础计数问题上的表现,特别是通过链式推理(COT)提示的效果。结果显示,GPTo1-mini、文心一言3.5和讯飞4.0Ultra在首轮测试中表现优秀,而其他模型在COT提示后也能显著提升正确率,唯有讯飞4.0-Lite表现不佳。测试强调了COT在提升模型逻辑推理能力中的重要性,并指出免费版本中智谱GLM较为可靠。
前端大模型入门(二):掌握langchain的核心Runnable接口
Langchain.js 是 Langchain 框架的 JavaScript 版本,专为前端和后端 JavaScript 环境设计。最新 v0.3 版本引入了强大的 Runnable 接口,支持灵活的执行方式和异步操作,方便与不同模型和逻辑集成。本文将详细介绍 Runnable 接口,并通过实现自定义 Runnable 来帮助前端人员快速上手。

阿里通义灵码的最佳实践
上周首次尝试了阿里巴巴的通义灵码AI插件,体验良好。该插件体积适中,约5.8M,适合项目开发使用。其@workspace和@terminal功能强大,能快速帮助开发者熟悉新项目结构,提供智能代码导航、搜索、优化及错误提示等服务,显著提升开发效率与代码质量。实践证明,通义灵码在加速项目理解和新需求实现方面表现出色,是开发者的得力助手。
互联网时代呼唤‘新中文‘的崛起 - 谈谈象形文字在如今分词方法下面临的挑战
本文探讨了汉字在互联网和大模型时代的挑战与机遇,分析了汉字在创造新词、自然语言处理等方面的局限性,并提出了“新中文”概念,包括二维部首组合法、拼音化与语调简化等创新方法,旨在保留汉字文化精髓的同时,提升其在数字时代的适应性和处理效率。

【Chain-of-Thought Prompting】链式思考(CoT)提示、零样本 COT 提示、自动思维链(Auto-CoT)
链式思考(CoT)提示是一种通过中间推理步骤实现复杂推理能力的方法,由Wei等人(2022)引入。它能够与少样本提示结合,提高任务处理效果。通过逐步推理,即使是大型语言模型也能展示出更强的推理能力。例如,在解决数学问题或逻辑判断上,CoT提示能显著提升正确率,尤其是在缺乏大量训练数据的情况下。
获取任意网站 icon 这件事并没那么简单
本文源自开发者Pony在创作“标签星球”过程中遇到的一个需求:如何高效获取并展示网站的Logo。为此,他深入研究并自建了一套图标获取与托管服务。标签星球是一款基于浏览器收藏夹的启动页应用,能将收藏夹转换为导航页形式,并支持模糊搜索及收藏夹分享等功能。在寻找合适服务时,Pony发现现有解决方案要么受限于技术壁垒,要么覆盖范围有限,这促使他着手搭建自己的服务。文章详细介绍了该服务的设计思路和技术实现过程,包括对多种网站图标设置方法的分析、链接处理策略、获取流程、缓存机制以及错误处理方案等。
LLM应用实战:当KBQA集成LLM(二)
本文主要是针对KBQA方案基于LLM实现存在的问题进行优化,主要涉及到图谱存储至Es,且支持Es的向量检索,还有解决了一部分基于属性值倒查实体的场景,且效果相对提升。

AI 提示词模板相关的架构设计
现在很多企业纷纷研发大语言模型以解决业务问题。提示词在与模型交互中起到关键作用。为优化提示词模板的修改、提高渲染效率及确保安全性,架构设计注重可修改性、安全性、可靠性和性能。设计包括:将提示词存储在OSS以方便修改和版本控制;使用本地缓存提升读取性能;模板引擎增强灵活性;秘钥安全存储在加密系统中;并通过配置中心动态调整。此设计旨在提供高效、安全且可靠的AI交互体验等。