利用TTS技术让你的AI Agent发声

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
视觉智能开放平台,视频资源包5000点
NLP自然语言处理_高级版,每接口累计50万次
简介: 【10月更文挑战第5天】

1 语音逻辑设计

一个AI Agent应用的语音逻辑设计流程图。

1.1 基本流程

- 用户 -> Agent -> 文本回答

最基础的交互模式。用户输入被传递给Agent,Agent生成文本回答。

1.2 添加语音功能

- 用户 -> Agent -> 文本回答
           |
           v
        TTS服务 -> MSTTS -> 语音回答

基本流程基础上,增加文本转语音(TTS)服务。Agent生成的文本回答被发送到TTS服务,然后通过MSTTS(Microsoft Text-to-Speech)转换为语音回答。

1.3 完整流程

- 用户 -> Agent -> 文本回答
           |
           v (异步)
        TTS服务 -> MSTTS -> 语音回答

文本回答和语音回答是并行处理的。Agent生成文本回答后,同时开始TTS转换过程,这个过程被标记为"异步"。

1.4 设计思路

  • 模块化:将文本处理和语音转换分离,便于独立开发和维护。
  • 异步处理:文本回答可以立即呈现,而语音转换在后台进行,提高响应速度。
  • 灵活性:可以根据需求选择只使用文本回答或同时使用语音回答。
  • 技术整合:利用MSTTS等成熟技术,提高语音质量。

这种设计允许AI Agent应用在保持高效文本交互的同时,提供更丰富的语音交互体验。

2 TTS能力介绍

以 Google Cloud Text-To-Speech 服务为例说明。

开发人员可用 Text-to-Speech 创建可播放音频格式的自然发音的合成人类语音。可用由 Text-to-Speech 创建的音频数据文件来丰富应用功能或者扩大视频或录音等媒体。

Text-to-Speech 会将文本或语音合成标记语言 (SSML) 输入转换为音频数据,例如 MP3 或 LINEAR16(WAV 文件中使用的编码)。

2.1 基本示例

Text-to-Speech 适用于向用户播放人类语音音频的任何应用。您可以使用它将任意字符串、字词和句子转换为表述相同内容的人的语音。

设想您有一个语音辅助应用,可以通过可播放音频文件,向您的用户提供自然语言反馈。您的应用可能会执行某个操作,然后向用户提供人类语音作为反馈。

例如,您的应用可能想要报告它已成功将某项活动添加到用户的日历中。您的应用会构建一个响应字符串向用户报告操作已成功,例如“我已将活动添加到您的日历中”。

使用 Text-to-Speech,您可以将该响应字符串转换为实际的人类语音以播放给用户,类似于下面提供的示例。

示例 1:Text-to-Speech 生成的音频文件

要创建音频文件,请向 Text-to-Speech 发送请求,如:

curl -H "Authorization: Bearer "$(gcloud auth print-access-token) -H "x-goog-user-project: <var>PROJECT_ID</var>" -H "Content-Type: application/json; charset=utf-8" --data "{
  'input':{
    'text':'I\'ve added the event to your calendar.'
  },
  'voice':{
    'languageCode':'en-gb',
    'name':'en-GB-Standard-A',
    'ssmlGender':'FEMALE'
  },
  'audioConfig':{
    'audioEncoding':'MP3'
  }
}" "https://texttospeech.googleapis.com/v1/text:synthesize"

2.2 语音合成

将文本输入转换为音频数据的过程称为合成,而输出合成则称为合成语音。 Text-to-Speech 采用两种类型的输入:原始文本或 SSML 格式的数据(下文详解)。要创建新的音频文件,可调用 API 的 synthesize 端点。

语音合成过程会生成原始音频数据,格式为 base64 编码字符串。您必须先将 base64 编码字符串解码为音频文件,应用才可以播放相应文件。大多数平台和操作系统都具备将 base64 文本解码为可播放媒体文件的工具。

2.3 语音

Text-to-Speech 生成自然人类语音的原始音频数据。也就是说,它生成的音频听上去像人在说话。当您向 Text-to-Speech 发送合成请求时,您必须指定“说出”字词的语音

Text-to-Speech 有多种自定义语音供您选择。语音因语言、性别和口音(适用于某些语言)而异。例如,你可以创建模仿带有英国口音的女性说英语的声音音频,如以上示例 1您也可以将同一文本转换为不同的语音,比方说有澳大利亚口音的男性说英语的声音。

2.4 WaveNet 语音

Text-to-Speech 还同其他传统合成语音一起,提供优质的 WaveNet 生成语音。用户发现 Wavenet 生成语音比其他合成语音更温暖,更像人声。

WaveNet 语音的主要不同之处在于生成语音所用的 WaveNet 模型。WaveNet 模型一直在使用真人发声的原始音频样本进行训练。因此,这些模型生成的合成语音,其音节、音位和字词的重音与音调更像人类。

2.5 其他音频输出设置

除了语音之外,您还可以配置语音合成创建的音频数据输出的其他方面。Text-to-Speech 支持您配置语速、音高、音量和采样率(单位为赫兹)。

2.6 语音合成标记语言 (SSML) 支持

可通过语音合成标记语言 (SSML) 对文本进行标记来增强 Text-to-Speech 生成的合成语音。SSML 可让您在 Text-to-Speech 生成的音频数据中插入暂停、首字母缩写词发音或其他细节。

注意:Text-to-Speech 不支持特定可用语言的部分 SSML 元素。

例如,您可以通过提供具有标记序数词的 SSML 输入的 Text-to-Speech 来确保合成语音正确地读出序数词。

创建服务账号:

为其创建密钥:

添加密钥:

新建 json 类型密钥:

下载该 json 密钥存储到项目路径下:

项目配置该密钥:

为项目启用 API 服务

3 Voice函数的实现

@app.post("/chat")
def chat(query: str, background_tasks: BackgroundTasks):
    master = Master()
    msg = master.run(query)
    unique_id = str(uuid.uuid4())
    background_tasks.add_task(master.background_voice_synthesis, msg, unique_id)
    return {
   "msg": msg, "id": unique_id}
def background_voice_synthesis(self, text: str, uid: str):
    # 无返回值,只是触发语音合成
    asyncio.run(self.get_voice(text, uid))
    # text 要转换为语音的文本
    async def get_voice(self, text: str, uid: str):
        print("text2speech", text)
        print("uid", uid)
        print("当前Edge大师应该的语气是:", self.emotion)
        # 默认 grpc 会报 503 错误,必须 rest 请求
        client = texttospeech.TextToSpeechClient(transport="rest")
        input_text = texttospeech.SynthesisInput(text="fsfsdfsd")
        print("input_text=", input_text)
        # Note: the voice can also be specified by name.
        # Names of voices can be retrieved with client.list_voices().
        voice = texttospeech.VoiceSelectionParams(
            language_code="en-US",
            name="en-US-Studio-O",
        )

        audio_config = texttospeech.AudioConfig(
            audio_encoding=texttospeech.AudioEncoding.LINEAR16,
            speaking_rate=1
        )

        response = client.synthesize_speech(
            request={
   "input": input_text, "voice": voice, "audio_config": audio_config}
        )
        print("response=", response)
        # The response's audio_content is binary.
        with open("output.mp3", "wb") as out:
            out.write(response.audio_content)
            print('Audio content written to file "output.mp3"')

终端输出:

生成文件:

4 语音克隆+TTS增强

4.1 Bark

直达官网,第二代Bark声音克隆 🐶 & 全新中文声音克隆:

4.2 阿里Sambert语音合成

提供SAMBERT+NSFGAN深度神经网络算法与传统领域知识深度结合的文字转语音服务,兼具读音准确,韵律自然,声音还原度高,表现力强的特点。

语音合成API基于达摩院改良的自回归韵律模型,具有推理速度快,合成效果佳的特点。开发者可以通过以下链接,了解如何通过大模型服务平台调用Sambert语音合成API:

Sambert语音合成API基于达摩院改良的自回归韵律模型,支持文本至语音的实时流式合成。可被应用于:

  • 智能设备/机器人播报的语音内容,如智能客服机器人、智能音箱、数字人
  • 音视频创作中需要将文字转为语音播报的场景,如小说阅读、新闻播报、影视解说、配音等。

① 将合成音频保存为文件

以下代码展示了将流式返回的二进制音频,保存为本地文件。

import os

from dotenv import load_dotenv

load_dotenv("qwen.env")
import sys
from dashscope.audio.tts import SpeechSynthesizer

result = SpeechSynthesizer.call(model='sambert-zhichu-v1',
                                text='今天天气怎么样',
                                sample_rate=48000)
if result.get_audio_data() is not None:
    with open('output.wav', 'wb') as f:
        f.write(result.get_audio_data())
    print('SUCCESS: get audio data: %dbytes in output.wav' %
          (sys.getsizeof(result.get_audio_data())))
else:
    print('ERROR: response is %s' % (result.get_response()))

② 将合成音频通过设备播放

调用成功后,通过本地设备播放实时返回的音频内容。

运行示例前,需要通过pip安装第三方音频播放套件。

# Installation instructions for pyaudio:
# APPLE Mac OS X
#   brew install portaudio 
#   pip install pyaudio
# Debian/Ubuntu
#   sudo apt-get install python-pyaudio python3-pyaudio
#   or
#   pip install pyaudio
# CentOS
#   sudo yum install -y portaudio portaudio-devel && pip install pyaudio
# Microsoft Windows
#   python -m pip install pyaudio
import dashscope
import sys
import pyaudio
from dashscope.api_entities.dashscope_response import SpeechSynthesisResponse
from dashscope.audio.tts import ResultCallback, SpeechSynthesizer, SpeechSynthesisResult

dashscope.api_key='sk-xxx'

class Callback(ResultCallback):
    _player = None
    _stream = None

    def on_open(self):
        print('Speech synthesizer is opened.')
        self._player = pyaudio.PyAudio()
        self._stream = self._player.open(
            format=pyaudio.paInt16,
            channels=1,
            rate=48000,
            output=True)

    def on_complete(self):
        print('Speech synthesizer is completed.')

    def on_error(self, response: SpeechSynthesisResponse):
        print('Speech synthesizer failed, response is %s' % (str(response)))

    def on_close(self):
        print('Speech synthesizer is closed.')
        self._stream.stop_stream()
        self._stream.close()
        self._player.terminate()

    def on_event(self, result: SpeechSynthesisResult):
        if result.get_audio_frame() is not None:
            print('audio result length:', sys.getsizeof(result.get_audio_frame()))
            self._stream.write(result.get_audio_frame())

        if result.get_timestamp() is not None:
            print('timestamp result:', str(result.get_timestamp()))

callback = Callback()
SpeechSynthesizer.call(model='sambert-zhichu-v1',
                       text='你是睿智的JavaEdge',
                       sample_rate=48000,
                       format='pcm',
                       callback=callback)

执行完后,你就能听到系统语音播放内容了!

目录
相关文章
|
4天前
|
人工智能 自然语言处理 机器人
文档智能与RAG技术如何提升AI大模型的业务理解能力
随着人工智能的发展,AI大模型在自然语言处理中的应用日益广泛。文档智能和检索增强生成(RAG)技术的兴起,为模型更好地理解和适应特定业务场景提供了新方案。文档智能通过自动化提取和分析非结构化文档中的信息,提高工作效率和准确性。RAG结合检索机制和生成模型,利用外部知识库提高生成内容的相关性和准确性。两者的结合进一步增强了AI大模型的业务理解能力,助力企业数字化转型。
34 3
|
14天前
|
人工智能 搜索推荐 安全
AI技术在医疗领域的应用与挑战
【10月更文挑战第27天】 本文探讨了人工智能(AI)在医疗领域的应用,包括疾病诊断、药物研发和患者管理等方面。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题和技术局限性等。通过对这些方面的深入分析,我们可以更好地理解AI在医疗领域的潜力和发展方向。
118 59
|
3天前
|
人工智能 文字识别 运维
AI多模态的5大核心关键技术,让高端制造实现智能化管理
结合大模型应用场景,通过AI技术解析高端制造业的复杂设备与文档数据,自动化地将大型零件、机械图纸、操作手册等文档结构化。核心技术包括版面识别、表格抽取、要素抽取和文档抽取,实现信息的系统化管理和高效查询,大幅提升设备维护和生产管理的效率。
|
12天前
|
机器学习/深度学习 人工智能 自然语言处理
思通数科AI平台在尽职调查中的技术解析与应用
思通数科AI多模态能力平台结合OCR、NLP和深度学习技术,为IPO尽职调查、融资等重要交易环节提供智能化解决方案。平台自动识别、提取并分类海量文档,实现高效数据核验与合规性检查,显著提升审查速度和精准度,同时保障敏感信息管理和数据安全。
60 11
|
8天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
42 4
|
8天前
|
机器学习/深度学习 人工智能 算法
基于AI的性能优化技术研究
基于AI的性能优化技术研究
|
12天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗健康领域的应用与挑战####
本文旨在探讨人工智能(AI)技术在医疗健康领域的创新应用及其面临的主要挑战。通过深入分析AI如何助力疾病诊断、治疗方案优化、患者管理及药物研发,本文揭示了AI技术在提升医疗服务质量、效率和可及性方面的巨大潜力。同时,文章也指出了数据隐私、伦理道德、技术局限性等关键问题,并提出了相应的解决策略和未来发展方向。本文为医疗从业者、研究者及政策制定者提供了对AI医疗技术的全面理解,促进了跨学科合作与创新。 ####
|
10天前
|
人工智能 算法
AI技术在医疗领域的应用及其挑战
【10月更文挑战第31天】本文将探讨AI技术在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念开始,然后详细介绍其在医疗领域的应用,包括疾病诊断、药物研发、患者护理等方面。最后,我们将讨论AI技术在医疗领域面临的挑战,如数据隐私、算法偏见等问题。
|
11天前
|
存储 人工智能 文字识别
AI与OCR:数字档案馆图像扫描与文字识别技术实现与项目案例
本文介绍了纸质档案数字化的技术流程,包括高精度扫描、图像预处理、自动边界检测与切割、文字与图片分离抽取、档案识别与文本提取,以及识别结果的自动保存。通过去噪、增强对比度、校正倾斜等预处理技术,提高图像质量,确保OCR识别的准确性。平台还支持多字体识别、批量处理和结构化存储,实现了高效、准确的档案数字化。具体应用案例显示,该技术在江西省某地质资料档案馆中显著提升了档案管理的效率和质量。
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
医疗行业的语音识别技术解析:AI多模态能力平台的应用与架构
AI多模态能力平台通过语音识别技术,实现实时转录医患对话,自动生成结构化数据,提高医疗效率。平台具备强大的环境降噪、语音分离及自然语言处理能力,支持与医院系统无缝集成,广泛应用于门诊记录、多学科会诊和急诊场景,显著提升工作效率和数据准确性。