
通义灵码智能编码助手,全面公测
通义灵码,是阿里云出品的一款基于通义大模型的智能编码辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力,并针对阿里云 SDK/OpenAPI 的使用场景调优,助力开发者高效、流畅的编码。
CodeFuse-MFTCoder提升Qwen-14B代码能力
Qwen(通义千问)是阿里云开源的大型语言模型集合,目前有两个参数规模的模型:Qwen-7B和Qwen-14B。Qwen官方透出的评测中,在各项能力上都超过了同等大小的开源大语言模型,包括LLaMA,LLaMA2,ChatGLM2,Baichuan2,InternLM等。
LangChain+通义千问+AnalyticDB向量引擎保姆级教程
本文以构建AIGC落地应用ChatBot和构建AI Agent为例,从代码级别详细分享AI框架LangChain、阿里云通义大模型和AnalyticDB向量引擎的开发经验和最佳实践,给大家快速落地AIGC应用提供参考。

函数计算X 通义千问快速部署 AI 个人助手应用
基于函数计算X 通义千问快速部署 AI 个人助手应用,用户可以根据需要选择不同角色的AI助手开启写作,角色包括职业顾问、小红书写手、心灵导师等,你可以尽情发挥创造力,通过限制提示词、字数、情节等各种条件生成短篇小说。
AIGC-知识库-LLM:在云上从0开始搭建智能问答机器人Streamlit网页版
本文描述在阿里云上从0开始构建个人/企业专属,具备私域知识库+LLM智能问答能力的网页版聊天机器人。网页采用streamlit实现,知识库技术方案使用了Lindorm AI数据服务平台知识库能力,LLM使用了开源ChatGLM2-6B。 Streamlit使用起来非常简便,可以让开发者快速(短则几十分钟即可)搭建一个具备公网访问能力的网页。尤其在人工智能开发上,可使用Streamlit快速搭建应用环境,让开发人员将更多精力集中在人工智能本身,本文从0开始详细讲解整个应用的构建过程,代码实现了一个简洁的具备公网访问能力的网页版聊天机器人。
AIGC-知识库-LLM:从0开始搭建智能问答钉钉机器人
本文描述在阿里云上从0开始构建个人/企业专属,具备私域知识库+LLM智能问答钉钉机器人。知识库技术方案使用了Lindorm AI数据服务平台知识库能力,LLM使用了开源ChatGLM2-6B。

数据缓存系列分享(六):通义千问Qwen-14B大模型快速体验
阿里达摩院近期对通义千问大模型 Qwen-14B 进行了开源(之前开源的是Qwen-7B模型),目前在ModelScope和HuggingFace上均可直接下载。关于Qwen-7B的搭建可以参考我们之前的文章:数据缓存系列分享(五):开源大语言模型通义千问快速体验版,本文将使用一样的方式打开Qwen-14B,快速体验一下。
通义千问14B开源!内附魔搭最佳实践
9月25日,阿里云开源通义千问140亿参数模型Qwen-14B及其对话模型Qwen-14B-Chat,免费可商用。Qwen-14B在多个权威评测中超越同等规模模型,部分指标甚至接近Llama2-70B。阿里云此前开源的70亿参数模型Qwen-7B等,一个多月下载量破100万,成为开源社区的口碑之作。

2023第十二届中国智能产业高峰论坛之文档大模型的探索与思考
近日,2023第十二届中国智能产业高峰论坛(CIIS 2023)在江西南昌顺利举行,本次论坛主要讲解了关于AI大模型、生成式AI、无人系统、智能制造和数字安全等领域的议题。其中令我印象最深刻的就是上海合合信息的丁凯老师讲解的**多模态大模型与文档图像智能理解专题论坛**的部分了。

通义妙谈|通义千问 x AnalyticDB PostgreSQL向量引擎,让企业大模型拥有“记忆”。
向量数据库,为什么被称为大模型开发训练“海马体”? 向量数据库 x 大模型,具体如何配合来构建企业应用? 如何求得企业大模型“最优解”? 一起来看看吧~

沉浸式学习PostgreSQL|PolarDB 16: 植入通义千问大模型+文本向量化模型, 让数据库具备AI能力
本文将带领大家来体验一下如何将“千问大模型+文本向量化模型”植入到PG|PolarDB中, 让数据库具备AI能力.
大型机器学习模型:技术深度与广度的探讨
大型机器学习模型的技术深度和广度令人惊叹。这些模型, 如Google的Transformer模型,BERT模型,以及OpenAI的GPT-4模型,已经改变了我们理解和处理自然语言的方式,同时也在图像识别,语音识别等领域取得了显著的成果。本文将深入探讨大型机器学习模型的关键技术。
深入了解大模型:探讨大型神经网络的崛起与应用
近年来,大型神经网络模型如GPT-3、BERT和T5已经引领了人工智能领域的发展潮流。这些庞大的模型参数、深层网络结构和大规模训练数据的结合,使它们成为了自然语言处理、计算机视觉和其他领域的重要工具。本文将深入探讨大型神经网络模型的崛起、技术细节和实际应用。
深入探讨大型语言模型:创新、挑战与前景
随着人工智能领域的不断发展,大型语言模型已经成为人们热议的话题之一。这些模型如GPT-3、BERT和T5,以其强大的自然语言处理能力和广泛的应用领域而闻名。本文将深入探讨大型语言模型的技术、创新、挑战以及未来前景。
使用 LangChain 和 Node.js 提取数据
在本篇文章中,将分享如何使用 LangChain(一个用于构建 AI 驱动应用程序的框架)通过 GPT 和 Node.js 提取和生成结构化 JSON 数据
Python程序设计实例 | set集合
* 本系列推文案例中,建议Python采用3.10及以上版本,NumPy采用1.22.3及以上版本,Matplotlib采用3.5.1及以上版本,Pandas采用1.4.2及以上版本。Python从3.10这个版本开始,标准发行版本中自带的IDLE交互式环境中输入提示符>>>单独放在左侧,不能随输入语句一起复制。为了清晰区分实例在交互环境中的输入和输出,本系列推文在每个输入语句的开头依然保留输入提示符>>>。