AIGC核心技术——计算机视觉(CV)预训练大模型

简介: 【1月更文挑战第13天】AIGC核心技术——计算机视觉(CV)预训练大模型

c4546b0ba704f16db2e1ca0036f5709a(1).jpeg
Florence是微软在2021年11月提出的一种视觉基础模型,其采用了双塔Transformer结构,其中文本部分采用了12层Transformer,而视觉部分则采用了SwinTransformer。通过对来自互联网的9亿图文对进行学习,Florence通过Unified Contrasive Learning机制将图文映射到相同的空间中,为计算机视觉领域的各种任务提供了强大的支持。

在Florence模型中,文本和视觉信息分别经过不同的Transformer结构处理,形成了一个双塔的架构。这种架构的设计使得模型能够更好地捕捉文本和图像之间的关联,提高了模型在图文任务上的性能。12层Transformer用于处理文本信息,通过对文本的逐层抽象,模型能够理解更高层次的语义信息。而在视觉部分,SwinTransformer被采用,这是一种基于局部注意力机制的视觉Transformer,能够更有效地捕捉图像中的局部特征,提高了图像处理的精度。

关键的训练数据来自互联网上的9亿图文对。这意味着Florence在学习过程中接触到了大量的多样性数据,这对于提高模型的泛化能力至关重要。Unified Contrasive Learning机制被用于将图文映射到相同的空间中,这意味着模型学会了将图像和文本表示在一个共同的语义空间中,从而能够更好地理解它们之间的关系。这也使得Florence成为一个通用的预训练大模型,可用于多个计算机视觉任务。

Florence模型在下游任务中展现了卓越的性能。其中包括图文检索、图像分类、目标检测、视觉问答以及动作识别等任务。在图文检索任务中,Florence能够精准地匹配图像和文本,提高了搜索结果的准确性。在图像分类任务中,模型能够准确地识别图像中的物体类别,具有出色的分类能力。目标检测任务中,Florence能够有效地定位和识别图像中的多个目标,为实时物体检测提供了强大的支持。在视觉问答和动作识别任务中,模型展现了对语境理解和动作识别的卓越能力。

目录
相关文章
|
2月前
|
机器学习/深度学习 存储 缓存
加速LLM大模型推理,KV缓存技术详解与PyTorch实现
大型语言模型(LLM)的推理效率是AI领域的重要挑战。本文聚焦KV缓存技术,通过存储复用注意力机制中的Key和Value张量,减少冗余计算,显著提升推理效率。文章从理论到实践,详细解析KV缓存原理、实现与性能优势,并提供PyTorch代码示例。实验表明,该技术在长序列生成中可将推理时间降低近60%,为大模型优化提供了有效方案。
209 15
加速LLM大模型推理,KV缓存技术详解与PyTorch实现
|
2月前
|
人工智能 搜索推荐 API
AI赋能大学计划·大模型技术与应用实战学生训练营——华东师范大学站圆满结营
4月24日,由中国软件行业校园招聘与实习公共服务平台携手阿里魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行大模型应用实战学生训练营——华东师范大学站圆满结营。
106 2
|
2月前
|
人工智能 自然语言处理 知识图谱
Yuxi-Know:开源智能问答系统,基于大模型RAG与知识图谱技术快速构建知识库
Yuxi-Know是一个结合大模型RAG知识库与知识图谱技术的智能问答平台,支持多格式文档处理和复杂知识关系查询,具备多模型适配和智能体拓展能力。
304 0
Yuxi-Know:开源智能问答系统,基于大模型RAG与知识图谱技术快速构建知识库
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
AI大模型进阶系列(01)看懂AI大模型的主流技术 | AI对普通人的本质影响是什么
本文分享了作者在AI领域的创作心得与技术见解,涵盖从获奖经历到大模型核心技术的深入解析。内容包括大模型推理过程、LLM类型、prompt工程参数配置及最佳实践,以及RAG技术和模型微调的对比分析。同时探讨了AI对社会和个人的影响,特别是在deepseek出现后带来的技术革新与应用前景。适合希望了解AI大模型技术及其实际应用的读者学习参考。
|
26天前
|
机器学习/深度学习 人工智能 算法
大型多模态推理模型技术演进综述:从模块化架构到原生推理能力的综合分析
该研究系统梳理了大型多模态推理模型(LMRMs)的技术发展,从早期模块化架构到统一的语言中心框架,提出原生LMRMs(N-LMRMs)的前沿概念。论文划分三个技术演进阶段及一个前瞻性范式,深入探讨关键挑战与评估基准,为构建复杂动态环境中的稳健AI系统提供理论框架。未来方向聚焦全模态泛化、深度推理与智能体行为,推动跨模态融合与自主交互能力的发展。
107 13
大型多模态推理模型技术演进综述:从模块化架构到原生推理能力的综合分析
|
2月前
|
机器学习/深度学习 编解码 人工智能
计算机视觉五大技术——深度学习在图像处理中的应用
深度学习利用多层神经网络实现人工智能,计算机视觉是其重要应用之一。图像分类通过卷积神经网络(CNN)判断图片类别,如“猫”或“狗”。目标检测不仅识别物体,还确定其位置,R-CNN系列模型逐步优化检测速度与精度。语义分割对图像每个像素分类,FCN开创像素级分类范式,DeepLab等进一步提升细节表现。实例分割结合目标检测与语义分割,Mask R-CNN实现精准实例区分。关键点检测用于人体姿态估计、人脸特征识别等,OpenPose和HRNet等技术推动该领域发展。这些方法在效率与准确性上不断进步,广泛应用于实际场景。
410 64
计算机视觉五大技术——深度学习在图像处理中的应用
|
27天前
|
人工智能 负载均衡 API
长连接网关技术专题(十二):大模型时代多模型AI网关的架构设计与实现
随着 AI 技术快速发展,业务对 AI 能力的渴求日益增长。当 AI 服务面对处理大规模请求和高并发流量时,AI 网关从中扮演着至关重要的角色。AI 服务通常涉及大量的计算任务和设备资源占用,此时需要一个 AI 网关负责协调这些请求来确保系统的稳定性与高效性。因此,与传统微服务架构类似,我们将相关 API 管理的功能(如流量控制、用户鉴权、配额计费、负载均衡、API 路由等)集中放置在 AI 网关层,可以降低系统整体复杂度并提升可维护性。 本文要分享的是B站在大模型时代基于多模型AI的网关架构设计和实践总结,希望能带给你启发。
98 4
|
30天前
|
人工智能 前端开发 开发工具
对话阿里云通义灵码技术负责人陈鑫:AI编程的现状与未来
在AI快速发展的2025年,通义灵码作为国内领先的AI编程助手,正通过其独特的智能体架构和强大模型能力重新定义开发方式。本文邀请技术负责人陈鑫(神秀),探讨AI编程现状与未来。通义灵码基于Qwen3模型打造,具备记忆系统革新、MCP工具生态和多模态交互等优势,推出三种工作模式以适应不同场景。尽管行业仍面临挑战,但国产模型正在崛起,企业可采用“三步走”策略引入AI工具。未来,AI将从辅助走向主导,深化代码理解并重构开发工具,助力更高效、创造性的编程方式。
|
1月前
|
人工智能 自然语言处理 安全
通义灵码技术进阶实战:三个企业级应用案例深度解析
本文介绍了通义灵码在企业级场景中的三个真实应用案例:一是优化金融交易系统性能,通过改进代码锁机制将延迟降至8ms;二是为电商平台设计弹性扩容方案,在双11期间成功应对流量高峰并降低40%资源成本;三是帮助跨国团队统一代码规范,显著减少冲突率并提升协作效率。文章还总结了技术进阶的关键要点,包括上下文工程、明确约束、文化适配和迭代优化,并提出了将通义灵码融入DevSecOps流程的建议,展示了其作为核心生产力工具的价值。
133 14
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
多模态AI核心技术:CLIP与SigLIP技术原理与应用进展
近年来,多模态表示学习在人工智能领域取得显著进展,CLIP和SigLIP成为里程碑式模型。CLIP由OpenAI提出,通过对比学习对齐图像与文本嵌入空间,具备强大零样本学习能力;SigLIP由Google开发,采用sigmoid损失函数优化训练效率与可扩展性。两者推动了多模态大型语言模型(MLLMs)的发展,如LLaVA、BLIP-2和Flamingo等,实现了视觉问答、图像描述生成等复杂任务。这些模型不仅拓展了理论边界,还为医疗、教育等领域释放技术潜力,标志着多模态智能系统的重要进步。
410 13
多模态AI核心技术:CLIP与SigLIP技术原理与应用进展
下一篇
oss创建bucket