暂时未有相关云产品技术能力~
better bench 简介:CS博士;研究领域:类脑计算、持续学习、AI、数据挖掘、自然语言处理、数学建模。
本文综述了人类大脑网络连接的研究,探讨了网络枢纽在认知功能和大脑疾病中的关键作用,并介绍了网络枢纽的检测方法以及网络模型在大脑功能研究中的应用。
本文提出了一个机制模型,阐释了连接中枢在人类大脑网络中的作用及其对认知表现的影响,揭示了连接中枢的多样性与大脑网络模块化和认知功能之间的正向关系。
本文提出了一种名为"无忘记学习"(Learning without Forgetting, LWF)的算法,它允许在不牺牲原有任务性能的情况下,通过仅使用新任务的数据来训练卷积神经网络以学习新的视觉能力。
本文研究了在回声状态网络(ESN)中引入分层聚类结构对网络稳定性的影响,发现通过调整簇内和簇间的连接性及每个簇的主干单元数量,可以扩展谱半径的稳定范围,从而提高网络的稳定性和性能。
本文提供了2023年MathorCup高校数学建模挑战赛大数据竞赛赛道A的解决方案,涉及基于计算机视觉的坑洼道路检测和识别任务,包括数据预处理、特征提取、模型建立、训练与评估等步骤的Python代码解析。
本文提供了2023年MathorCup大数据竞赛B题的电商零售商家需求预测及库存优化问题的Python代码解析,涉及数据预处理、特征工程、时间序列预测、聚类分析以及模型预测性能评价等步骤。
本文介绍了一种名为Gradient Episodic Memory(GEM)的算法,旨在解决神经网络在持续学习中的灾难性遗忘问题,通过构建经验记忆库传递知识,同时提出了评估模型在任务间转移知识和避免遗忘能力的度量指标。
本文介绍了iCaRL算法,一种增量分类器和表示学习系统,它能够逐步从数据流中学习新概念,通过使用最近均值示例规则、基于牧羊的样本选择和知识蒸馏等方法,在CIFAR-100和ImageNet数据集上展示了其优越的逐步学习能力和对灾难性遗忘的有效抵抗。
本文系统回顾了回声状态网络(ESN)从设计到应用的全过程,探讨了其在多个领域的实际应用,并分析了不同结构的ESN模型如经典ESN、DeepESN和组合模型的性能,以及它们在时间序列预测和动态系统建模中的有效性。
本文介绍了一种名为弹性权重合并(EWC)的方法,用于解决神经网络在学习新任务时遭受的灾难性遗忘问题,通过选择性地降低对旧任务重要权重的更新速度,成功地在多个任务上保持了高性能,且实验结果表明EWC在连续学习环境中的有效性。
本文研究了在连续学习环境中使用小型情节记忆来解决灾难性遗忘问题,通过实证分析发现经验重播(ER)方法在连续学习中的表现优于现有最先进方法,并且重复训练对过去任务的小型记忆可以提升泛化性能。
本文综述了持续学习的理论基础、方法论和应用实践,探讨了五种主要的解决策略,包括基于回放、架构、表示、优化和正则化的方法,并深入分析了持续学习的不同场景、分类、评价指标以及面临的挑战和解决方案。
本文提出了一种基于元学习的跨域终身学习框架,通过跨域三元组网络(CDTN)学习任务间的相似性表示,并结合自注意模块与软注意网络(SAN)来增强特征提取和任务权重分配,以提高学习效率并减少对先前知识的遗忘。
本文介绍了一种结合生物学启发的神经动力学和内存计算的深度学习方法,提出了脉冲神经单元(SNU),该单元融合了脉冲神经网络的时间动力学和人工神经网络的计算能力,通过实验分析显示,在手写数字识别任务中,基于SNU的网络达到了与循环神经网络相似或更高的准确性。
本文通过多个案例,详细解释了贝叶斯分析在不同情境下的应用,包括跨种族夫妇的有罪概率、患X病的风险评估、犯罪现场的嫌疑人推断以及XOR运算的概率计算,展示了如何利用贝叶斯定理进行推理和决策。
本文介绍了2023年高教社杯数学建模竞赛A题的定日镜场优化设计问题,涉及问题分析和数学模型构建,旨在提高太阳能光热发电效率并实现电力系统的新能源转型。
本文介绍了2023年高教社杯数学建模竞赛B题,聚焦于多波束测深系统的覆盖宽度和重叠率问题,包括问题分析、数学模型构建和参考文献,并针对不同场景下的测线设计提出了解决方案。
本文介绍了2023年高教社杯数学建模竞赛C题,涉及蔬菜类商品的自动定价与补货决策,包括问题分析、数学模型的构建以及Python代码实现,旨在优化商超的补货和定价策略以提高收益。
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
本文介绍了2023钉钉杯复赛A题的智能手机用户监测数据分析,包括数据预处理、特征提取、推荐模型建立与评价的Python代码实现,旨在通过用户使用记录预测APP使用情况并建立推荐系统。
本文通过收集390名3至12个月婴儿及其母亲的相关数据,运用结构方程模型、相关性分析和多种机器学习模型,研究了母亲身心健康对婴儿行为特征和睡眠质量的影响,并提出了改善母婴交互质量和提高婴儿睡眠质量的解决方案。
本文介绍了如何通过观察均值和方差的变化、ADF单位根检验、KPSS检验以及差分操作来判定时间序列数据是否为平稳或非平稳,并提供了Python代码示例进行实际检验。
本文介绍了2023年华数杯全国大学生数学建模竞赛C题的Python代码实现,探讨母亲身心健康对婴儿成长的影响,包括建立数学模型研究母亲身体和心理指标与婴儿行为特征和睡眠质量的关系,以及通过优化模型分析治疗费用与母亲心理健康状况的关系。
本文介绍了一种基于计算机配色理论的数学模型,旨在解决不透明制品的最优配色方案设计问题,通过线性回归分析、色差计算和多目标规划模型,实现了高效、准确的配色方案优化。
本文提供了2023年华数杯全国大学生数学建模竞赛A题的完整论文,深入分析了隔热材料的结构优化控制研究,包括建立数学模型、求解单根纤维的热导率、优化织物结构参数以及考虑对流换热影响的模型调整,旨在开发出具有更优隔热性能的新型织物。
本文提供了2023年华数杯全国大学生数学建模竞赛A题的详细分析、数学模型建立及参考文献,聚焦于隔热材料的结构优化控制研究,旨在解决单根隔热材料纤维的热导率测量难题,并探讨如何通过优化织物编织结构来提升隔热性能。
本文详细介绍了2023年华数杯全国大学生数学建模竞赛B题的最优配色方案设计的建模方案,包括问题分析、建模方案解析及参考文献,旨在通过数学模型和优化算法实现不透明制品的计算机配色,提高配色效率和准确性。
本文介绍了2023年第二届钉钉杯大学生大数据挑战赛初赛A题的Python代码分析,涉及智能手机用户监测数据分析中的聚类分析和APP使用情况的分类与回归问题。
本文介绍了2023年第二届钉钉杯大学生大数据挑战赛初赛B题的Python代码分析,涉及美国纽约公共自行车使用量的时间序列预测、网络分析和聚类分析。
本文提供了2023年第二届钉钉杯大学生大数据挑战赛初赛B题"美国纽约公共自行车使用量预测分析"中问题二的Python代码分析,涉及数据预处理、特征工程、多种聚类算法实现及其结果评估和可视化。
本文分析了2023年第二届钉钉杯大学生大数据挑战赛初赛B题"美国纽约公共自行车使用量预测分析",重点讨论了问题一的Python代码实现,包括自行车借还网络图的构建、网络密度的计算以及平均最短路径长度和网络直径的分析。
本文提供了2023年第二届钉钉杯大学生大数据挑战赛初赛A题"智能手机用户监测数据分析"的Python代码分析,包括数据预处理、特征工程、聚类分析等步骤,以及如何使用不同聚类算法进行用户行为分析。
本文提供了一份详细的指南,教导求职者如何根据不同的工作描述和自身经验,创建和优化简历,包括专业摘要、技能强调、成就描述以及如何使简历内容更加突出和有针对性。
本文总结了在源码安装openssl过程中遇到的一些问题及其解决方法,包括缺少libssl.so.1.1库文件、缺少Perl模块以及权限不足时如何指定安装目录等问题。
本文分析了谷歌翻译在谷歌浏览器中失效的原因,并提供了针对Mac OS、Windows和Linux系统的解决方案,包括下载和执行特定软件以修复翻译服务不响应的问题。
本文详细介绍了江西省研究生数学建模竞赛题目之一"蒸汽发生器倒U型管内液体流动"的数学建模方案和参考文献,包括对U型管内液体流动的建模、压差分析、流动情况计算以及减少倒流现象的策略。
本文介绍了江西省研究生数学建模竞赛题目之二“国际‘合作-冲突’的演化规律研究”的建模方案和参考文献,探讨了如何通过博弈论和决策树模型来分析和预测国家间的合作与冲突行为,并提出了评估国际环境和应对突发事件的策略。
本文提供了江西省研究生数学建模竞赛第三题“植物的多样性”的建模方案、参考文献和可视化示例,探讨了如何通过数学模型研究植物数量变化规律并提出保持森林多样性的策略。
本文介绍了2023电工杯A题的研究成果,详细分析了电采暖负荷参与电力系统功率调节的技术经济性,提出了基于微分方程模型的电采暖负荷特性分析、功率调节能力评估、多用户负荷调节策略、住宅区电网调节能力分析以及削峰填谷的收益评估,并提供了Python代码实现。
本文提出了一个基于历史快递运输数据的数学模型,用于预测快递需求量、评估站点城市重要性、预测未来运输需求、优化运输成本,并分析了快递需求的固定和非固定部分,为快递公司提供了决策支持,帮助其更好地规划仓库站点、节约成本并提高运输效率。
本文介绍了两种解决Python使用pandas库读取Excel时,数字前填充的0丢失问题的方法:一是在读取时指定列以字符串格式读取,二是在Excel中预先将数值转换为文本格式。
本文介绍了2023年电工杯竞赛B题的数学建模方案和Python代码实现,详细阐述了如何分析调查问卷数据,建立评价指标体系,构建数学模型评估人工智能对大学生学习的影响,并提供了数据预处理、特征编码、可视化分析等代码示例。
本文讨论了在Linux服务器中使用pip安装Python包后,通过pip show命令能查看包信息但无法import的问题,并提供了两种解决方法:一是解决因用户权限不一致导致的问题,二是解决因Python环境版本不匹配导致的问题。
本文介绍了2023年第三届长三角高校数学建模竞赛B题的详细分析和研究,探讨了长三角地区新能源汽车发展与双碳目标的关系,提供了相关数据集的介绍和下载链接,并提出了对未来市场保有量、新能源汽车与传统燃油汽车的市场竞争关系以及碳达峰和碳中和时间的预测问题。
本文概述了2023年4月美赛加赛Y题“Understanding Used Sailboat Prices”的三篇完整论文及代码,涉及二手帆船定价的数学模型构建、区域效应分析、模型在香港市场的适用性验证,以及对帆船市场因素的深入分析和预测。
本文介绍了如何在服务器上启动Jupyter Notebook并通过SSH隧道在本地浏览器中访问和编辑程序的详细步骤,包括服务器端Jupyter的启动命令、本地终端的SSH隧道建立方法以及在浏览器中访问Jupyter Notebook的流程。
本文介绍了2023年第三届长三角高校数学建模竞赛C题的背景和要求,聚焦于分析2023年考研难度及其影响因素,并探讨了自1979年以来考研难度的变化趋势和未来预测,同时提供了相关数据集的详细介绍和获取方式。
本文详细介绍了2023年第三届长三角高校数学建模竞赛A题的详细数学建模过程,探讨了快递包裹装箱优化问题,提出了三维装箱算法、目标规划和优化策略,旨在减少耗材使用量和优化耗材总体积,同时考虑了货物和耗材的柔性属性。
本文介绍了2023年第十一届泰迪杯数据挖掘挑战赛C题的解决方案,详细阐述了如何构建泰迪内推平台的招聘与求职双向推荐系统,包括数据收集、分析、画像构建、岗位匹配度和求职者满意度模型的建立,以及履约率最优化的推荐模型,提供了27页的论文和实现代码。
本文介绍了如何使用LangChain库和FAISS工具在本地部署一个基于chatGPT的实时文档和表格数据助手,详细阐述了项目原理、搭建步骤、环境配置、代码修改和运行流程,以及如何在自己的数据上构建和使用chatGPT。