【2024年华数杯全国大学生数学建模竞赛】C题:老外游中国 问题思路分析及Python代码实现

简介: 本文提供了2024年华数杯全国大学生数学建模竞赛C题“老外游中国”的解题思路分析和Python代码实现,涉及景点评分统计、城市综合评价、游玩路线规划以及特定条件下的旅游优化问题。

【2024 年华数杯全国大学生数学建模竞赛】C题:老外游中国 问题思路分析及Python代码实现

更新时间:2024-8-6 所有数学模型和代码实现,已更新完毕

1 题目

最近,“city 不 city”这一网络流行语在外国网红的推动下备受关注。随着我国过境免签政策的落实,越来越多外国游客来到中国,通过网络平台展示他们在华旅行的见闻,这不仅推动了中国旅游业的发展,更是在国际舞台上展现了一个真实而生动的中国,一举多得。

假设外国游客入境后能在中国境内逗留 144 小时,且能从任一城市附近的机场出境。由于每个城市景点较多,为了便于外国游客能够游览到更多的城市,现假定“每个城市只选择一个评分最高的景点游玩”,称之为“城市最佳景点游览原则”。

现有一个包含中国(不含港澳台)352 个城市的旅游景点的数据集,每个城市的 csv 文件中有 100 个景点,每个景点的信息包含有景点名称、网址、地址、景点介绍、开放时间、图片网址、景点评分、建议游玩时长、建议游玩季节、门票信息、小贴士等。

请建立数学模型,回答下列问题:

问题 1 请问 352 个城市中所有 35200 个景点评分的最高分(Best Score,简称 BS)是多少?全国有多少个景点获评了这个最高评分(BS)?获评了这个最高评分(BS)景点最多的城市有哪些?依据拥有最高评分(BS)景点数量的多少排序,列出前 10 个城市。

问题 2 假如外国游客遵循“城市最佳景点游览原则”,结合城市规模、环境环保、人文底蕴、交通便利,以及气候、美食等因素,请你对 352 个城市进行综合评价,选出“最令外国游客向往的 50 个城市”。

问题 3 现有一名外国游客从广州入境,他想在 144 小时以内游玩尽可能多的城市,同时要求综合游玩体验最好,请你规划他的游玩路线。需要结合游客的要求给出具体的游玩路线,包括总花费时间,门票和交通的总费用以及可以游玩的景点数量。他的要求有:

① 遵循城市最佳景点游览原则;

② 城市之间的交通方式只选择高铁;

③ 只在“最令外国游客向往的 50 个城市”中选择要游玩的城市。

问题 4 如果将问题 3 的游览目标改为:既要尽可能的游览更多的城市,又需要使门票和交通的总费用尽可能的少。请重新规划游玩路线,并给出门票和交通的总费用,总花费时间以及可以游玩的城市数量。

问题 5 现有一名外国游客只想游览中国的山景,他乘飞机入境中国的城市不限。请你为他选择入境的机场和城市,并个性化定制他的 144 小时旅游路线, 既要尽可能的游览更多的山,又需要使门票和交通的总费用尽可能的少。需要结合游客的要求给出具体的游玩路线,包括总花费时间,门票和交通的总费用以及可以游玩的景点数量。他的要求有:

① 每个城市只游玩一座评分最高的山;

② 城市之间的交通方式只选择高铁;

③ 旅游城市不局限于“最令外国游客向往的 50 个城市”,游览范围拓展到352 个城市。

2 问题重述

问题1:主要关注所有城市中景点评分的最高分及分布情况。

问题2:评价城市的综合吸引力,选择最令外国游客向往的50个城市。

问题3:在144小时内规划最优的游玩路线,以最大化游玩的城市数量和体验。

问题4:在144小时内游览尽可能多的城市,重点降低门票和交通总费用。

问题5:专注于景点的游览,入境城市不限,要求在144小时内尽可能多地游览山景,且控制费用。

3 思路分析

3.1 问题一

第一题是统计问题,用python遍历所有景点的评分列,找到其中的最大值,过滤出评分等于最高评分(BS)的所有景点,并统计其数量。按城市分组,统计每个城市中评分等于最高评分(BS)的景点数量。根据统计结果,按景点数量排序,获取前10个城市。实现过程见以下第4部分。

3.2 问题二

要对352个城市进行综合评价,选出最向往的50个城市,简单的话可以采用加权评分模型,将城市规模、环境环保、人文底蕴、交通便利、气候、美食等因素量化并赋予不同权重,综合计算每个城市的综合评分,选择得分最高的前50个城市。或者建立多属性决策分析(MADA),应用MADA方法,如TOPSIS或AHP,对城市进行多属性评价。将每个因素转换为标准化的评分,并根据决策矩阵进行排名,从而选出最受欢迎的城市。或者使用聚类算法将城市按综合特征进行分组,分析每个群体的特点,选出代表性最强的50个城市。或者利用主成分分析算法将多个因素的影响降维至少量主成分,通过主成分得分对城市进行排名,选出得分最高的前50个城市。复杂一点的话,从推荐系统的角度去做,建立基于内容的推荐系统或协同过滤系统,结合外国游客的历史游览数据和对城市的偏好,预测并推荐最受欢迎的城市。这个角度的推荐算法比较多,创新性搞,新颖一些。
在这里插入图片描述

参考文献

  • [1]杨小玲.多属性决策分析及其在洪灾风险评价中的应用研究[D].华中科技大学,2012.
  • [2]廖思思,朱锦程.陕甘宁20个旅游城市旅游竞争力评价[J].绿色科技,2023,25(15):221-226.DOI:10.16663/j.cnki.lskj.2023.15.048.
  • [3]高珺.基于子空间聚类算法的湖南旅游推荐研究[D].中南林业科技大学,2023.DOI:10.27662/d.cnki.gznlc.2023.000899.
  • [4]陈红玲,叶玫,卢淑萍,等.基于旅游资源画像的个性化旅游推荐系统[J].信息技术与信息化,2022,(11):115-118.
  • [5]陈源鹏.基于序列挖掘的个性化旅游景点推荐研究[D].桂林电子科技大学,2020.DOI:10.27049/d.cnki.ggldc.2020.000496.
  • [6]张诗梦.基于“城市画像”与“用户画像”的个性化旅游推荐系统实践[D].东北财经大学,2019.DOI:10.27006/d.cnki.gdbcu.2019.000861.

3.3 问题三

这个问是路径规划问题,经典的代表性算法有旅行商问题(TSP)优化问题,将城市视为图中的节点,使用旅行商问题算法(如遗传算法、模拟退火等)优化游客的游玩路径。在限制条件下(如总时间和交通方式),找到最优路线,以最大化景点数量和体验。

在这里插入图片描述

  • [1]王梦甜.基于遗传算法的南京周边城市旅游规划研究[J].市场周刊,2021,34(02):180-181+188.

  • [2]唐存花,汤可宗.求旅行商问题的幂律变换优化蚁群算法[J].软件导刊,2024,23(02):74-83.

  • [3]丁增良,陈珏,邱禧荷.一种应用于旅行商问题的莱维飞行转移规则蚁群优化算法[J].计算机应用研究,2024,41(05):1420-1427.DOI:10.19734/j.issn.1001-3695.2023.09.0450.

  • [4]边锦华,张晓霞.求解TSP问题的一种变领域遗传算法[J].福建电脑,2023,39(12):24-27.DOI:10.16707/j.cnki.fjpc.2023.12.005.

3.4 问题四

问题3的基础上,建立一个多目标优化模型,将游览城市数量和总费用作为优化目标,使用线性规划、整数规划或混合整数规划方法。模型中需要包括时间限制(144小时),门票和交通费用的约束。通过求解优化模型,可以找到在总费用最小的情况下游览最多城市的最佳路线,同时计算总花费时间、门票和交通费用及游玩城市数量。论文的写作上,在数学模型上差异较小,创新点注重在求解算法上的创新。
在这里插入图片描述

参考文献

  • [1]梁健恒.基于改进蚁群算法的旅游园区观光路径规划优化[J].控制与信息技术,2024,(03):80-85.DOI:10.13889/j.issn.2096-5427.2024.03.011.
  • [2]董玮明,邱灿华.基于时间优化的旅游园区路径规划研究[J].信息技术与信息化,2023,(04):203-205+209.
  • [3]崔喜宁.基于蚁群算法的陕西红色旅游线路优化[J].信息技术与信息化,2021,(11):170-172.
  • [4]周生超.基于蚁群算法的寿光市文化旅游路径优化研究[J].潍坊工程职业学院学报,2021,34(03):100-103.
  • [5]李磊,张延星,谢超.基于旅游线路规划的蚁群优化算法研究[J].现代电子技术,2020,43(17):115-118.DOI:10.16652/j.issn.1004-373x.2020.17.026.
  • [6]李梦丹.基于蚁群算法西安旅游路线的优化研究[J].价值工程,2020,39(20):136-137.DOI:10.14018/j.cnki.cn13-1085/n.2020.20.058.

3.5 问题五

这个问和以上几个问有一些不同,是一个综合优化问题。这一问专注于景点的游览,入境城市是不限的,要求在144小时内尽可能多地游览山景,且控制费用。在山景游览的基础上,进一步复杂化了问题,包括选择入境城市和城市之间的高铁交通限制,同时要求控制费用。在问题4的多目标优化模型中加入山景因素,考虑山景数量、门票和交通费用。重新设计目标函数,平衡山景数量与费用。利用问题3和4中的路径优化方法,筛选出入境城市,并在全范围内规划山景游览路线。综合考虑高铁路线、时间限制和山景优化。对问题5中的复杂情况,应用动态规划方法进行路线规划,同时剪枝以减少计算量。结合山景的特点,优化选择城市和游玩顺序。使用启发式搜索算法和模拟退火技术优化山景游览路线,调整入境城市和游玩城市,以实现山景数量最多且费用最低的目标。

总之,这一问需要使用问题1中的景点评分数据、问题2中的城市选择、问题3和4中的路径规划方法。问题1的数据用于确定山景的评分,问题2的城市排名可作为入境城市的参考,问题3和4的优化技术可以应用于问题5的路线规划。

4 代码实现

4.1 问题一

import os
import pandas as pd

# 定义数据文件夹路径
folder_path = '附件'
# 初始化一个空的数据框
all_data = pd.DataFrame()
# 遍历文件夹中的所有CSV文件并加载数据
for file_name in os.listdir(folder_path):
    if file_name.endswith('.csv'):
        file_path = os.path.join(folder_path, file_name)

        # 提取城市名称(去掉文件扩展名)
        city_name = os.path.splitext(file_name)[0]

        # 读取CSV文件
        city_data = pd.read_csv(file_path)

        # 为数据框添加城市列
        city_data['城市'] = city_name

        # 确保 '景点评分' 列为浮点数类型
        city_data['评分'] = pd.to_numeric(city_data['评分'], errors='coerce')

        # 合并到总数据框中
        all_data = pd.concat([all_data, city_data], ignore_index=True)
all_data

在这里插入图片描述

# 确保 '景点评分' 列为浮点数类型
all_data['评分'] = pd.to_numeric(all_data['评分'], errors='coerce')

# 获取最高评分
best_score = all_data['评分'].max()

# 统计获得最高评分的景点数量
best_score_count = all_data[all_data['评分'] == best_score].shape[0]

# 按城市分组,统计每个城市中评分等于最高评分的景点数量
best_score_by_city = all_data[all_data['评分'] == best_score].groupby('城市').size().reset_index(name='景点数量')

# 按景点数量排序,获取前10个城市
top_10_cities = best_score_by_city.sort_values(by='景点数量', ascending=False).head(10)

# 打印结果
print(f"最高评分(BS):{best_score}")
print(f"获得最高评分(BS)的景点总数:{best_score_count}")
print("获得最高评分(BS)景点最多的前10个城市:")
print(top_10_cities)
最高评分(BS):5.0
获得最高评分(BS)的景点总数:2563
获得最高评分(BS)景点最多的前10个城市:
       城市  景点数量
4      三沙    36
25    五家渠    28
224    玉溪    21
233    益阳    20
91     天门    19
310   阿拉尔    18
215    潍坊    18
220    烟台    18
84   大兴安岭    18
283    邢台    17

4.2 问题二、三、四、五

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

目录
相关文章
|
7天前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
4天前
|
缓存 监控 测试技术
Python中的装饰器:功能扩展与代码复用的利器###
本文深入探讨了Python中装饰器的概念、实现机制及其在实际开发中的应用价值。通过生动的实例和详尽的解释,文章展示了装饰器如何增强函数功能、提升代码可读性和维护性,并鼓励读者在项目中灵活运用这一强大的语言特性。 ###
|
7天前
|
缓存 开发者 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第35天】装饰器在Python中是一种强大的工具,它允许开发者在不修改原有函数代码的情况下增加额外的功能。本文旨在通过简明的语言和实际的编码示例,带领读者理解装饰器的概念、用法及其在实际编程场景中的应用,从而提升代码的可读性和复用性。
|
3天前
|
Python
探索Python中的装饰器:简化代码,提升效率
【10月更文挑战第39天】在编程的世界中,我们总是在寻找使代码更简洁、更高效的方法。Python的装饰器提供了一种强大的工具,能够让我们做到这一点。本文将深入探讨装饰器的基本概念,展示如何通过它们来增强函数的功能,同时保持代码的整洁性。我们将从基础开始,逐步深入到装饰器的高级用法,让你了解如何利用这一特性来优化你的Python代码。准备好让你的代码变得更加优雅和强大了吗?让我们开始吧!
10 1
|
8天前
|
设计模式 缓存 监控
Python中的装饰器:代码的魔法增强剂
在Python编程中,装饰器是一种强大而灵活的工具,它允许程序员在不修改函数或方法源代码的情况下增加额外的功能。本文将探讨装饰器的定义、工作原理以及如何通过自定义和标准库中的装饰器来优化代码结构和提高开发效率。通过实例演示,我们将深入了解装饰器的应用,包括日志记录、性能测量、事务处理等常见场景。此外,我们还将讨论装饰器的高级用法,如带参数的装饰器和类装饰器,为读者提供全面的装饰器使用指南。
|
4天前
|
存储 缓存 监控
掌握Python装饰器:提升代码复用性与可读性的利器
在本文中,我们将深入探讨Python装饰器的概念、工作原理以及如何有效地应用它们来增强代码的可读性和复用性。不同于传统的函数调用,装饰器提供了一种优雅的方式来修改或扩展函数的行为,而无需直接修改原始函数代码。通过实际示例和应用场景分析,本文旨在帮助读者理解装饰器的实用性,并鼓励在日常编程实践中灵活运用这一强大特性。
|
8天前
|
存储 算法 搜索推荐
Python高手必备!揭秘图(Graph)的N种风骚表示法,让你的代码瞬间高大上
在Python中,图作为重要的数据结构,广泛应用于社交网络分析、路径查找等领域。本文介绍四种图的表示方法:邻接矩阵、邻接表、边列表和邻接集。每种方法都有其特点和适用场景,掌握它们能提升代码效率和可读性,让你在项目中脱颖而出。
21 5
|
6天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
16 2
|
8天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
25 4
|
8天前
|
API 数据处理 Python
探秘Python并发新世界:asyncio库,让你的代码并发更优雅!
在Python编程中,随着网络应用和数据处理需求的增长,并发编程变得愈发重要。asyncio库作为Python 3.4及以上版本的标准库,以其简洁的API和强大的异步编程能力,成为提升性能和优化资源利用的关键工具。本文介绍了asyncio的基本概念、异步函数的定义与使用、并发控制和资源管理等核心功能,通过具体示例展示了如何高效地编写并发代码。
19 2