增量学习中Task incremental、Domain incremental、Class incremental 三种学习模式的概念及代表性数据集?

简介: 本文介绍了增量学习中的三种主要模式:任务增量学习(Task-incremental)、域增量学习(Domain-incremental)和类别增量学习(Class-incremental),它们分别关注任务序列、数据分布变化和类别更新对学习器性能的影响,并列举了每种模式下的代表性数据集。

1 概念

在持续学习领域,Task incremental、Domain incremental、Class incremental 是三种主要的学习模式,它们分别关注不同类型的任务序列和数据分布变化。
在这里插入图片描述

1.1 Task Incremental Learning (Task-incremental)

任务增量学习,也称为任务增量式学习,是指在这种学习模式下,学习器依次面对不同的任务,每个任务有自己独特的类别集合。在推理时,学习器需要能够识别所有曾经学习过的任务。这种学习模式的挑战在于,学习新任务时可能会对旧任务的知识造成灾难性遗忘。代表性的数据集包括Split MNIST、Split CIFAR-10、Split CIFAR-100。

  • Split MNIST:MNIST数据集被分成多个任务,每个任务包含不同的数字。例如,第一任务为0-1,第二任务为2-3,依此类推。

  • Split CIFAR-10:CIFAR-10数据集被分为多个任务,每个任务包含不同的类别。例如,第一任务为飞机和汽车,第二任务为鸟和猫,依此类推。

  • Split CIFAR-100:CIFAR-100数据集被分为多个任务,每个任务包含不同的类别。例如,前20类作为第一任务,接下来的20类作为第二任务,依此类推。

1.2 Domain Incremental Learning (Domain-incremental)

域增量学习,又称为领域增量学习,是指学习器在面对一系列任务时,每个任务的数据输入分布(domain)可能不同,但任务的类别集合保持一致。这种学习模式模拟了现实世界中数据分布随时间变化的情况。领域增量学习的挑战在于如何适应新数据分布的同时,保持对旧数据的识别能力。代表性的数据集包括Permuted MNIST、Rotated MNIST、VLCS。

  • Permuted MNIST:对MNIST数据集的像素进行随机置换,产生多个任务。每个任务都有相同的类别(0-9),但输入数据的像素排列不同。

  • Rotated MNIST:将MNIST数据集的图像进行不同角度的旋转生成多个任务。例如,0度、15度、30度等。

  • VLCS:包含来自PASCAL VOC 2007, LabelMe, Caltech, 和Sun的数据,用于不同领域的图像分类任务。

1.3 Class Incremental Learning (Class-incremental)

类别增量学习,是指学习器在面对一系列任务时,每个任务引入新的类别,而旧类别不再出现。学习器需要在推理时能够区分所有曾经学习过的类别,但无法访问任务ID。这种学习模式的挑战在于,学习新类别的同时,要避免对旧类别的知识造成灾难性遗忘。代表性的数据集包括iCIFAR-100、iMNIST和CORe50等 。

  • iCIFAR-100(Incremental CIFAR-100):CIFAR-100数据集被分成多批,每一批包含不同的新类别。模型需在学习新类别的同时保留对旧类别的知识。

  • iMNIST(Incremental MNIST):类似于iCIFAR-100,但使用MNIST数据集。模型逐渐学习新的数字类别。

  • CORe50:一个包含50类物体的连续学习基准数据集,用于物体识别任务。

目录
相关文章
|
3月前
|
编解码 人工智能 文件存储
轻量级网络论文精度笔记(二):《YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object ..》
YOLOv7是一种新的实时目标检测器,通过引入可训练的免费技术包和优化的网络架构,显著提高了检测精度,同时减少了参数和计算量。该研究还提出了新的模型重参数化和标签分配策略,有效提升了模型性能。实验结果显示,YOLOv7在速度和准确性上超越了其他目标检测器。
67 0
轻量级网络论文精度笔记(二):《YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object ..》
|
5月前
|
机器学习/深度学习 存储 开发框架
【博士每天一篇文献-算法】NICE Neurogenesis Inspired Contextual Encoding for Replay-free Class Incremental Learn
NICE(Neurogenesis Inspired Contextual Encoding)是一种新型深度神经网络架构,旨在通过模拟生物神经系统的成熟过程来解决类别增量学习中的灾难性遗忘问题,无需重放旧样本即可实现有效的增量学习。
66 5
|
5月前
|
SQL 测试技术
预训练模型STAR问题之SST任务上下文SQL的问题如何解决
预训练模型STAR问题之SST任务上下文SQL的问题如何解决
|
5月前
|
机器学习/深度学习 算法
【文献学习】Channel Estimation Method Based on Transformer in High Dynamic Environment
一种基于CNN和Transformer的信道估计方法,用于在高度动态环境中跟踪信道变化特征,并通过实验结果展示了其相比传统方法的性能提升。
68 0
yolov8在进行目标追踪时,model.track()中persist参数的含义
yolov8在进行目标追踪时,model.track()中persist参数的含义
|
SQL 测试技术 数据库
database replay基础学习
在11g中,database replay是一个很重要的新特性,按照这个特性的说法,可以完整地捕获数据库的负载信息,便于在需要的时候随时重放。 使用这种方法,可以以二进制文件格式捕获 SQL 级以下的所有数据库活动,然后在同一数据库或不同数据库内进行重放。
1122 0
SAP QM初阶之启用了Multiple Specification功能后检验批的不同之处?
SAP QM初阶之启用了Multiple Specification功能后检验批的不同之处?
SAP QM初阶之启用了Multiple Specification功能后检验批的不同之处?
使用MAKER进行基因注释(高级篇之SNAP模型训练)
训练 ab initio 基因预测工具(以SNAP为例) 对于一个新的物种而言,你大概率是没有一个高质量的基因模型去进行基因预测。但是我们可以利用EST序列(少部分物种估计有)、二代测序数据、同源物种蛋白序列,先直接用Maker做基因注释,尽管得到的模型可能不是特别的完美,但可以作为输入反复迭代运行Maker,从而提高最终的表现。
2671 0