【博士每天一篇文献-算法】Extending stability through hierarchical clusters in Echo State Networks

简介: 本文研究了在回声状态网络(ESN)中引入分层聚类结构对网络稳定性的影响,发现通过调整簇内和簇间的连接性及每个簇的主干单元数量,可以扩展谱半径的稳定范围,从而提高网络的稳定性和性能。

阅读时间:2023-10-31

1 介绍

年份:2010
作者:Sarah Jarvis1,2* Stefan Rotter1,3 Ulrich Egert1,2
1 弗莱堡伯恩斯坦中心, 弗莱堡, 德国
2 弗莱堡大学工程学院微系统工程系生物微技术,德国弗莱堡
3 计算神经科学,生物系,弗莱堡大学,弗莱堡,德国
期刊:Frontiers in neuroinformatics
引用量:28

文章探讨了嵌入子结构对回声状态网络(Echo State Networks,简称ESN)稳定性的影响。这些网络依靠稳定的储层群体进行运行,以避免活动的累积。该研究特别关注引入分层聚类对谱半径的影响,而谱半径通常用于表示传统ESN中网络动力学的稳定性。文章解释了生成分层聚类ESN(HESN)的过程,其中包括三个新参数:簇内连通性(connintra)、簇间连通性(conninter)和每个簇的主干单元数量(bbpc)。研究发现,分层结构和相对较小的簇大小都可以扩展谱半径值的范围,从而得到稳定的网络,而增加簇间连通性会减小最大谱半径。研究表明,分层聚类的储层对谱半径的选择更加稳定,因为它们在更大范围的谱半径值下保持稳定。文章最后强调了理解储层架构如何影响稳定性对于适当设计非线性信号预测的ESN的重要性。
作者定义了具有不同连接概率和连接权重的层次聚类结构。这种层次聚类结构是通过将每个集群的前几个单元作为主干单元,并在不同集群之间建立连接来生成的。

2 创新点

(1)引入了层次聚类的 ESN(Echo State Networks)模型:论文介绍了通过在 ESN 中引入层次聚类的方法,即 Hierarchically Clustered ESN(HESN)模型。这种模型在传统的 ESN 中增加了层次结构,通过在网络中引入不同层次的集群,来提高网络的稳定性和性能。
(2)提出了新的网络参数:为了生成层次聚类的 ESN,论文引入了三个新的参数:集群内连接性(connintra)、集群间连接性(conninter)和每个集群的骨干单元数(bbpc)。这些参数的调整可以影响网络的稳定性和性能。
(3)研究了层次结构对网络稳定性的影响:论文通过实验发现,引入层次聚类结构和较小的相对集群大小可以扩展谱半径(spectral radius)的取值范围,从而提高网络的稳定性;而增加集群间连接性会降低网络的谱半径的最大值。
(4)论证了层次聚类的储层对谱半径的鲁棒性更高:论文进一步验证了层次聚类的储层在不同谱半径取值范围内都能保持稳定。这表明层次聚类的储层对于谱半径的选择更加鲁棒,能够在更大范围内保持网络的稳定性。

3 算法

image.png
有层次聚类的ESN
image.png
无层次聚类的ESN
生成层次聚类ESN的过程
(1)首先指定总储层大小R、簇数n和每个簇的背骨单元数b。
(2)然后为每个簇创建大小为R/n和连接概率conninter的簇内连接。
(3)接下来生成簇间连接矩阵。首先在每个簇中标识前b个单元作为背骨单位,然后定义一个大小为(bR/n)的矩阵,并使用连接概率conninter随机分配连接权重。储层的连接矩阵Wres通过重新缩放将最大特征值设置为定义的谱半径。

4 实验分析

ESN 的稳定性取决于多种因素的组合,包括绝对储层大小、绝对簇大小和簇数量。
image.png
研究了与储层结构相关的三个参数:储层大小R、每个簇的骨干单元数bbpc和簇间连通性conninte参数,对稳定性网络的光谱半径范围的影响,结果表明网络参数的变化对rmax值和特征值分布有明显影响。
image.png
发现层次结构对网络动态的影响大于聚类结构。增加层次结构会增加网络的最大稳态半径 rmax(表示网络稳定性的指标),而增加聚类结构对 rmax 的影响不明显。此外,我们还计算了网络的记忆容量(MC)来评估性能。实验结果显示,减少聚类数量可以增加记忆容量,而增加聚类之间的连接强度会降低记忆容量。总而言之,层次结构对网络稳定性有更大的影响,而聚类结构对网络性能的影响较小。
image.png

5 思考

利用了层次聚类的算法思想,对神经元分为几个簇。这篇论文的实验讨论部分是比较丰富的。类似的几篇论文如下:
【Modular state space of echo state network】
【Echo State Network with Hub Property】
【Extending stability through hierarchical clusters in Echo State Networks】
【A Versatile Hub Model For Efficient Information Propagation And Feature Selection】

目录
相关文章
|
7月前
|
机器学习/深度学习 人工智能 资源调度
【博士每天一篇文献-算法】连续学习算法之HAT: Overcoming catastrophic forgetting with hard attention to the task
本文介绍了一种名为Hard Attention to the Task (HAT)的连续学习算法,通过学习几乎二值的注意力向量来克服灾难性遗忘问题,同时不影响当前任务的学习,并通过实验验证了其在减少遗忘方面的有效性。
122 12
|
7月前
|
机器学习/深度学习 算法 计算机视觉
【博士每天一篇文献-算法】持续学习经典算法之LwF: Learning without forgetting
LwF(Learning without Forgetting)是一种机器学习方法,通过知识蒸馏损失来在训练新任务时保留旧任务的知识,无需旧任务数据,有效解决了神经网络学习新任务时可能发生的灾难性遗忘问题。
409 9
|
7月前
|
存储 机器学习/深度学习 算法
【博士每天一篇文献-算法】连续学习算法之HNet:Continual learning with hypernetworks
本文提出了一种基于任务条件超网络(Hypernetworks)的持续学习模型,通过超网络生成目标网络权重并结合正则化技术减少灾难性遗忘,实现有效的任务顺序学习与长期记忆保持。
85 4
|
7月前
|
存储 机器学习/深度学习 算法
【博士每天一篇文献-算法】连续学习算法之RWalk:Riemannian Walk for Incremental Learning Understanding
RWalk算法是一种增量学习框架,通过结合EWC++和修改版的Path Integral算法,并采用不同的采样策略存储先前任务的代表性子集,以量化和平衡遗忘和固执,实现在学习新任务的同时保留旧任务的知识。
172 3
|
15天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
83 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于生物地理算法的MLP多层感知机优化matlab仿真
本程序基于生物地理算法(BBO)优化MLP多层感知机,通过MATLAB2022A实现随机数据点的趋势预测,并输出优化收敛曲线。BBO模拟物种在地理空间上的迁移、竞争与适应过程,以优化MLP的权重和偏置参数,提升预测性能。完整程序无水印,适用于机器学习和数据预测任务。
|
1天前
|
资源调度 算法 数据可视化
基于IEKF迭代扩展卡尔曼滤波算法的数据跟踪matlab仿真,对比EKF和UKF
本项目基于MATLAB2022A实现IEKF迭代扩展卡尔曼滤波算法的数据跟踪仿真,对比EKF和UKF的性能。通过仿真输出误差收敛曲线和误差协方差收敛曲线,展示三种滤波器的精度差异。核心程序包括数据处理、误差计算及可视化展示。IEKF通过多次迭代线性化过程,增强非线性处理能力;UKF避免线性化,使用sigma点直接处理非线性问题;EKF则通过一次线性化简化处理。
|
3天前
|
算法 数据安全/隐私保护
基于二次规划优化的OFDM系统PAPR抑制算法的matlab仿真
本程序基于二次规划优化的OFDM系统PAPR抑制算法,旨在降低OFDM信号的高峰均功率比(PAPR),以减少射频放大器的非线性失真并提高电源效率。通过MATLAB2022A仿真验证,核心算法通过对原始OFDM信号进行预编码,最小化最大瞬时功率,同时约束信号重构误差,确保数据完整性。完整程序运行后无水印,展示优化后的PAPR性能提升效果。
|
6天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
|
6天前
|
算法 数据安全/隐私保护
基于Big-Bang-Big-Crunch(BBBC)算法的目标函数最小值计算matlab仿真
该程序基于Big-Bang-Big-Crunch (BBBC)算法,在MATLAB2022A中实现目标函数最小值的计算与仿真。通过模拟宇宙大爆炸和大收缩过程,算法在解空间中搜索最优解。程序初始化随机解集,经过扩张和收缩阶段逐步逼近全局最优解,并记录每次迭代的最佳适应度。最终输出最佳解及其对应的目标函数最小值,并绘制收敛曲线展示优化过程。 核心代码实现了主循环、粒子位置更新、适应度评估及最优解更新等功能。程序运行后无水印,提供清晰的结果展示。