【BetterBench博士】2024年华为杯E题:高速公路应急车道紧急启用模型 Python代码实现

简介: 本文介绍了2024年“华为杯”中国研究生数学建模竞赛的选题分析,重点讨论了高速公路应急车道启用模型的问题。文章详细描述了如何使用YOLOv5和SORT算法进行车辆检测与跟踪,计算车流密度、流量及速度,并利用随机森林回归预测交通拥堵。此外,还提出了多情景动态分析和虚拟应急车道控制策略,以及优化数据采集点布置的方法。提供了完整的Python代码和B站视频教程链接,帮助读者深入理解并实践该模型。

在这里插入图片描述

题目

【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析

【BetterBench博士】2024年中国研究生数学建模竞赛 E题:高速公路应急车道紧急启用模型 问题分析

【BetterBench博士】2024年中国研究生数学建模竞赛 C题:数据驱动下磁性元件的磁芯损耗建模 问题分析

1 问题一

(1) 第一小问

  1. 首先,需要将视频文件转换为帧,以便进行后续处理。
  2. 然后,使用算法对视频帧进行检测车辆。代码实现了YOLO5算法,尝试了FastRCNN算法非常耗时,不建议运行。
  3. 使用跟踪算法跟踪车辆。以下采用的SORT,或者DeepSORT等算法。
  4. 计算特征
  • 时间戳:通过视频帧的位置获取。
  • 车流密度:车流密度通常是检测到的车辆数量与区域面积的比值。
  • 车流量:在一定时间段内通过的车辆数量。
  • 平均速度:首先计算车辆的位移:通过跟踪的车辆ID在每一帧之间的位置信息,计算每辆车在相邻帧之间的位移。然后计算时间间隔:根据时间戳计算相邻帧之间的时间间隔。最后计算速度:使用位移除以时间间隔得到车辆的速度。

(2) 第二、三小问

可以使用时序预测模型(例如LSTM、ARIMA)或传统的回归模型(如线性回归、决策树)来预测交通流拥堵情况。下面是一个基于随机森林回归的实现,提取的车流参数(车流密度、车流量、速度)来预测未来是否会发生拥堵。使用从四个观测点视频中提取的车流密度、车流量和速度等数据作为模型输入,进行时序建模,并预测未来的交通拥堵状态。基于历史数据预测下一时间点的交通流参数(车流密度、车流量和速度),并结合定义的拥堵条件,发出实时预警。

定义拥堵状态:当车流密度大于0.7且速度小于40 km/h时

使用测试集验证模型预测的车流密度、车流量和速度,并结合可视化方法来评估模型的表现。计算混淆矩阵和ROC曲线,分析模型的拥堵预测能力。

import cv2
import torch
from sort.sort import Sort
import numpy as np
import pandas as pd
from datetime import datetime
from tqdm import tqdm  # 用于显示进度条
device = torch.device("cuda" if True else "cpu")
# 使用 YOLOv5 作为目标检测模型
def load_model():
    # 使用 Ultralytics 的 YOLOv5 模型,确保已安装 'yolov5' 包
    # pip install yolov5
    model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
    model.to(device)
    model.eval()
    return model

# 将检测结果格式化为 SORT 算法接受的格式
def format_detections(predictions, score_threshold=0.5):
    detections = []
    for *box, score, cls in predictions:
        if score > score_threshold and int(cls) == 2:  # COCO中 'car' 的类别ID通常为2
            x1, y1, x2, y2 = box
            detections.append([x1, y1, x2, y2, score])
    return detections

# 计算车辆速度 (像素/秒)
def calculate_speed(track, prev_track, fps):
    if prev_track is None:
        return 0
    # 计算位移 (欧几里得距离)
    x1, y1, _, _ = track[:4]
    prev_x1, prev_y1, _, _ = prev_track[:4]
    displacement = np.sqrt((x1 - prev_x1)**2 + (y1 - prev_y1)**2)
    time_interval = 1 / fps  # 时间间隔(秒)
    return displacement / time_interval  # 像素/秒

# 处理视频,提取车辆流量信息
def detect_and_track(video_path, model, tracker, device, score_threshold=0.5, resize_width=640):
    # 打开视频
    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        raise IOError(f"无法打开视频文件 {video_path}")

    fps = cap.get(cv2.CAP_PROP_FPS)
    frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))

    # 初始化数据存储
    timestamps = []
    densities = []
    flows = []
    speeds = []

    tracked_objects = {
   }  # 存储每个车辆的历史轨迹
    total_flow = 0  # 总车流量

    # 使用 tqdm 显示处理进度
    for _ in tqdm(range(frame_count), desc=f"Processing {video_path}"):
        ret, frame = cap.read()
        if not ret:
            break

        # 记录时间戳(可以选择只记录关键帧的时间戳以减少开销)
        timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")

        # 调整图像大小以加快处理速度
        if resize_width:
            height, width = frame.shape[:2]
            scale = resize_width / width
            frame_resized = cv2.resize(frame, (resize_width, int(height * scale)))
        else:
            frame_resized = frame

        # 转换颜色格式(BGR -> RGB)
        img_rgb = cv2.cvtColor(frame_resized, cv2.COLOR_BGR2RGB)

        # 使用模型进行检测
        results = model(img_rgb, size=640)  # size可以根据需求调整

        # 获取预测结果
        detections = results.xyxy[0].cpu().numpy()  # [x1, y1, x2, y2, confidence, class]
        detections = format_detections(detections, score_threshold)

        if len(detections) > 0:
            ...else:
            # 如果当前帧没有检测到车辆,存储默认值
            timestamps.append(timestamp)
            densities.append(0)
            flows.append(0)
            speeds.append(0)

    cap.release()

    # 返回结果 DataFrame
    data = pd.DataFrame({
   
        'timestamp': timestamps,
        'density': densities,
        'flow': flows,
        'speed': speeds
    })

    return data

def extract_vehicle_data(video_paths, score_threshold=0.5, resize_width=640):
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = load_model()
    tracker = Sort()

    all_vehicle_data = []
    for video in video_paths:
        vehicle_data = detect_and_track(
            video_path=video,
            model=model,
            tracker=tracker,
            device=device,
            score_threshold=score_threshold,
            resize_width=resize_width
        )
        all_vehicle_data.append(vehicle_data)

    # 合并所有视频的数据
    all_vehicle_data = pd.concat(all_vehicle_data, ignore_index=True)

    return all_vehicle_data

可视化提取出来的特征

import matplotlib.pyplot as plt
import pandas as pd
plt.rcParams['font.sans-serif'] = 'SimSun' # 换成自己环境下的中文字体,比如'SimHei'

# 第一个观测点数据可视化

# result_df = pd.read_csv('data/data_point1.csv')
# result_df = pd.read_csv('data/data_point1.csv')
# result_df = pd.read_csv('data/data_point3.csv')
result_df = pd.read_csv('data/data_point4.csv')
# 可视化车流密度、流量和平均速度
plt.figure(figsize=(10, 8))
plt.subplot(3, 1, 1)
plt.plot(range(len(result_df)), result_df['density'], label='车流密度', color='blue')
plt.title('车流密度随时间变化')
plt.xlabel('时间戳 (ms)')
plt.ylabel('车流密度')
plt.legend()

plt.subplot(3, 1, 2)
plt.plot(range(len(result_df)), result_df['flow'], label='车流量', color='orange')
plt.title('车流量随时间变化')
plt.xlabel('时间戳 (ms)')
plt.ylabel('车流量')
plt.legend()

plt.subplot(3, 1, 3)
plt.plot(range(len(result_df)), result_df['speed'], label='平均速度', color='green')
plt.title('平均速度随时间变化')
plt.xlabel('时间戳 (ms)')
plt.ylabel('平均速度 (像素/秒)')
plt.legend()

plt.tight_layout()
plt.savefig('img/第4个观测点数据可视化.png',dpi=200)
plt.show()

在这里插入图片描述

问题二 、三

传统应急车道的启用多是静态的,且缺少区域路网联动分析,难以动态应对不同场景下的交通需求。因此,模型需要集成多情景的动态分析,包括节假日高峰、突发事故、排队消散等情景。 对不同情景的处理逻辑,如在节假日高峰期通过流量监测系统提前识别大流量,启用应急车道;对于已经拥堵的路段,采取临时开放应急车道的策略来消散车流,恢复主线运行。

虚拟应急车道能够通过主动交通管理技术提升救援效率,缩短事故响应时间。因此,模型可考虑集成虚拟应急车道的控制策略,利用车辆通信系统动态引导车辆临时进入虚拟应急车道,提升通行效率。 在紧急情况下,模型通过仿真预测未来交通流量,并决定是否虚拟启用应急车道,结合事故发生时的流量、速度等关键参数决定应急车道的开放时长与区域。

应急车道管控不仅需要考虑实时流量与交通状况,还需结合历史数据,分析拥堵易发节点,构建拥堵中断模型。对于应急车道的开放时机和时长,需基于具体的交通状况预测。 集成实时交通数据与历史拥堵数据,构建交通流概率中断模型,动态调整应急车道的开放时长和开放区域。

可以通过VISSIM仿真分析不同车道配置下虚拟应急车道的效益优化,表明在不同事故情景下,适时开启虚拟应急车道可有效减少平均延误和排队长度。模型可以根据车道封闭数量和流量密度优化启用条件。引入VISSIM仿真结果,基于流量密度、封闭车道数和v/C值优化应急车道的启用条件,进一步提升模型的精度。

import pandas as pd
import numpy as np
import warnings

warnings.filterwarnings('ignore')
# 设置阈值
density_threshold = 0.7  # 车流密度阈值
speed_threshold = 40  # 速度阈值,单位:km/h

# 拥堵风险计算函数
def compute_congestion_risk(density, speed, density_threshold, speed_threshold):
   ...return congestion_risk

# 添加高峰期和事故判断函数
def is_peak_hour(timestamp):
    """假设高峰时段为每天的7-9点和17-19点"""
    hour = pd.to_datetime(timestamp).hour
    return (7 <= hour <= 9) or (17 <= hour <= 19)

def is_accident_scene(density, speed):
    """假设当速度为0且密度很高时为事故"""
    return (speed == 0) and (density > density_threshold)

# 动态管控模型:应急车道启用判断
def dynamic_control(data, density_threshold, speed_threshold, time_window=10):
    # 计算每个时刻的拥堵风险
    data['congestion_risk'] = data.apply(
        lambda row: compute_congestion_risk(row['density'], row['speed'], density_threshold, speed_threshold), axis=1)

    # 判断是否为高峰时段
    data['peak_hours'] = data['timestamp'].apply(is_peak_hour)

    # 判断是否为事故现场
    data['accident_scene'] = data.apply(lambda row: is_accident_scene(row['density'], row['speed']), axis=1)

    # 滑动窗口计算未来time_window分钟内的平均拥堵风险
    data['avg_risk'] = data['congestion_risk'].rolling(window=time_window).mean()

    # 如果未来的平均风险超过1,且为高峰期或事故现场,启用虚拟应急车道
    data['virtual_lane'] = np.where((data['avg_risk'] > 1) & (data['peak_hours'] | data['accident_scene']), True, False)
    return data



# 读取数据并应用模型
data_point = pd.read_csv('data/data_point1.csv')
data = data_point[(data_point['speed'] > 0) & (data_point['density'] > 0)]


# 应用动态控制模型
result = dynamic_control(data, density_threshold, speed_threshold)
# 输出结果
print(result[['timestamp', 'virtual_lane']])

在这里插入图片描述

问题四

  1. 问题分析

原有四个采集点的布置方案中,前三个采集点之间相隔 1000m,最后一个点与第三个点之间相隔 3000m。但是这样的布置在前1000m 的路段可以较好地捕捉交通状态变化,但在距离较长的第三点和第四点之间,可能会丢失大量交通流变化的信息。

优化数据采集点的布置,确保在第三点和第四点之间的 3000m 路段上能够精确采集数据,以便做出更科学的应急车道启用决策。优化模型的核心目标是:

  • 精度:确保关键路段(第三点到第四点)的交通状态能够被准确地监控。
  • 成本控制:在精度要求下,尽量减少新采集点的数量,降低安装与维护的成本。
  1. 建模算法步骤

(1)初始化参数:

  • 设定采集点的最小间隔 $D_{\text{min}} = 1000 \, m$。
  • 设定应急响应时间 $T_{\text{response}} = 10 \, \text{分钟}$。
  • 获取现有四个采集点的交通流量、速度和密度数据。

(2)计算每个路段的交通状态变异性:
根据变异性公式,计算各个路段的变异性 $V_i$。

(3)判断是否需要增加采集点:
如果某个路段的变异性 $Vi$ 超过预定阈值 $V{\text{threshold}}$,则需要在该路段新增数据采集点。

(4)优化布点方案:

  • 在第三点到第四点之间,若变异性较大($V2 > V{\text{threshold}}$),则在1500m处增加新的采集点。
  • 保证数据采集点的间隔 $D{\text{new}} \geq D{\text{min}}$。

(5)输出新的采集点布置方案。

import pandas as pd
import numpy as np

# 初始化参数
D_min = 1000  # 最小采集点间隔,单位:米
T_response = 10  # 应急响应时间,单位:分钟
V_threshold = 0.2  # 变异性阈值

# 读取数据
data_point1 = pd.read_csv('data/data_point1.csv')
data_point2 = pd.read_csv('data/data_point2.csv')
data_point3 = pd.read_csv('data/data_point3.csv')
data_point4 = pd.read_csv('data/data_point4.csv')

# 计算交通状态变异性
def compute_variability(data):
   ...# 计算每个路段的变异性
V1 = compute_variability(data_point1)
V2 = compute_variability(data_point2)
V3 = compute_variability(data_point3)
V4 = compute_variability(data_point4)

# 判断是否需要增加采集点
def check_new_point(V, V_threshold, D_current, D_min):
    if V > V_threshold and D_current > D_min:
        return True
    return False

# 路段间隔(第三点到第四点为3000m,其他为1000m)
D1, D2, D3 = 1000, 1000, 3000

# 判断第三点和第四点之间是否需要新增采集点
new_point_needed = check_new_point(V3, V_threshold, D3, D_min)

# 输出优化的布置方案
if new_point_needed:
    print("建议在第三点到第四点之间新增采集点")
else:
    print("现有采集点布置合理,无需新增采集点")

完整资料

转到B站视频介绍
bilibili.com/video/BV16AskeMEPN/?share_source=copy_web&vd_source=d2dd5fcbeeeec396792650b25c110a13
在这里插入图片描述

目录
相关文章
|
3天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品市场预测的深度学习模型
使用Python实现智能食品市场预测的深度学习模型
19 5
|
4天前
|
缓存 监控 测试技术
Python中的装饰器:功能扩展与代码复用的利器###
本文深入探讨了Python中装饰器的概念、实现机制及其在实际开发中的应用价值。通过生动的实例和详尽的解释,文章展示了装饰器如何增强函数功能、提升代码可读性和维护性,并鼓励读者在项目中灵活运用这一强大的语言特性。 ###
|
7天前
|
缓存 开发者 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第35天】装饰器在Python中是一种强大的工具,它允许开发者在不修改原有函数代码的情况下增加额外的功能。本文旨在通过简明的语言和实际的编码示例,带领读者理解装饰器的概念、用法及其在实际编程场景中的应用,从而提升代码的可读性和复用性。
|
3天前
|
Python
探索Python中的装饰器:简化代码,提升效率
【10月更文挑战第39天】在编程的世界中,我们总是在寻找使代码更简洁、更高效的方法。Python的装饰器提供了一种强大的工具,能够让我们做到这一点。本文将深入探讨装饰器的基本概念,展示如何通过它们来增强函数的功能,同时保持代码的整洁性。我们将从基础开始,逐步深入到装饰器的高级用法,让你了解如何利用这一特性来优化你的Python代码。准备好让你的代码变得更加优雅和强大了吗?让我们开始吧!
11 1
|
8天前
|
设计模式 缓存 监控
Python中的装饰器:代码的魔法增强剂
在Python编程中,装饰器是一种强大而灵活的工具,它允许程序员在不修改函数或方法源代码的情况下增加额外的功能。本文将探讨装饰器的定义、工作原理以及如何通过自定义和标准库中的装饰器来优化代码结构和提高开发效率。通过实例演示,我们将深入了解装饰器的应用,包括日志记录、性能测量、事务处理等常见场景。此外,我们还将讨论装饰器的高级用法,如带参数的装饰器和类装饰器,为读者提供全面的装饰器使用指南。
|
4天前
|
存储 缓存 监控
掌握Python装饰器:提升代码复用性与可读性的利器
在本文中,我们将深入探讨Python装饰器的概念、工作原理以及如何有效地应用它们来增强代码的可读性和复用性。不同于传统的函数调用,装饰器提供了一种优雅的方式来修改或扩展函数的行为,而无需直接修改原始函数代码。通过实际示例和应用场景分析,本文旨在帮助读者理解装饰器的实用性,并鼓励在日常编程实践中灵活运用这一强大特性。
|
5天前
|
机器学习/深度学习 算法 数据可视化
使用Python实现深度学习模型:智能食品配送优化
使用Python实现深度学习模型:智能食品配送优化
16 2
|
3天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
16 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
3天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
16 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
6天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
16 2