暂时未有相关云产品技术能力~
凡事预则立,不预则废
简单地说,虚拟机(Virtual Machine)就是允许我们在当前操作系统中运行其他操作系统的软件,本质上和 VS、QQ 这些应用程序一样。 所以,只要我们在电脑(PC 或笔记本等)上安装好虚拟机软件,就可以模拟出来若干台相互独立的虚拟 PC 设备,每一个都如何一台真实的计算机。在此基础上,我们可以给每台虚拟的 PC 设备安装指定的操作系统,这样就可以实现在一台电脑上同时运行多个操作系统。 另外,还可以将这些虚拟的系统连成局域网,用来部署网站集群架构等更深层次的运维技术。 展示的是在 Windows 10 桌面操作系统上安装的虚拟机软件 VMware Workstation(简称 VM
很多初学者在安装 Linux 系统时,都对自己的电脑配置存在质疑,担心其是否能够满足安装 Linux 的要求。本节就从 CPU、内存、硬盘、显卡等这些方面,详细介绍一下安装 Linux 系统的最低配置。 基于硬件的快速发展以及操作系统核心功能的增加,势必将淘汰掉一批老旧的电脑,它们已经没有能力负荷新的操作系统了。举个最直观的例子,奔腾-III 之前的硬件配置可能已经无法再搭载如今的 Linux 发行版了,而且这部分电脑很可能因为电子零件老化等因素,导致其在运行过程出现无法解释的宕机情况。 不过,Linux 系统所需的硬件配置也不需要太高端,大体来说,生产期限在 5 年以内的电脑,基本上就可
早期的 Linux 系统都是不带界面的,只能通过命令来管理,比如运行程序、编辑文档、删除文件等。所以,要想熟练使用 Linux,就必须记忆很多命令。 后来随着 Windows 的普及,计算机界面变得越来越漂亮,点点鼠标就能完成很多工作,人们已经习惯了图形界面化的操作,很难再忍受一片漆黑的命令行窗口了。这推动了 Linux 社区进行变革,很快推出了 Linux 系统的图形界面环境。完成工作的方式不止一种,Linux 一直以来都以此而闻名,在图形桌面上更是如此,Linux 有各种各样的图形化桌面可供选择。 Linux 中的桌面环境也是一个程序,它和内核不是绑定的,两者的开发也不是同步的;给不带
UNIX 与 Linux 之间的关系是一个很有意思的话题。在目前主流的服务器端操作系统中,UNIX 诞生于 20 世纪 60 年代末,Windows 诞生于 20 世纪 80 年代中期,Linux 诞生于 20 世纪 90 年代初,可以说 UNIX 是操作系统中的"老大哥",后来的 Windows 和 Linux 都参考了 UNIX。 现代的 Windows 系统已经朝着“图形界面”的方向发展了,和 UNIX 系统有了巨大的差异,从表面上甚至看不出两者的关联。 UNIX 的坎坷历史 UNIX 操作系统由肯•汤普森(Ken Thompson)和丹尼斯•里奇(Dennis Ritchie)发
与大家熟知的 Windows 操作系统软件一样,Linux 也是一个操作系统软件,其 logo 是一只企鹅。与 Windows 不同之处在于,Linux 是一套开放源代码程序的、可以自由传播的类 Unix 操作系统软件。Linux,全称GNU/Linux,是一种类似Unix的操作系统,可以免费使用,自由传播。它是一个基于POSIX的多用户、多任务、多线程、多CPU的操作系统。随着互联网的发展,Linux得到了全世界软件爱好者、组织和公司的支持。除了在服务器方面保持强劲的发展势头,在个人电脑和嵌入式系统方面也取得了长足的进步。用户不仅可以直观地获得操作系统的实现机制,还可以根据自己的需求对Lin
操作系统(Operating System,简称OS)简单通俗来讲就是一款软件。不过和一般软件不同,操作系统是管理和控制计算机硬件与软件资源的计算机程序,是直接运行在“裸机”上的最基本的系统软件。任何其他软件都必须在操作系统的支持下才能运行。 Linux 也是众多操作系统之一,要想知道 Linux 是什么,首先得说一说什么是操作系统。 计算机是一台机器,它按照用户的要求接收信息、存储数据、处理数据,然后再将处理结果输出(文字、图片、音频、视频等)。计算机由硬件和软件组成: 硬件是计算机赖以工作的实体,包括显示器、键盘、鼠标、硬盘、CPU、主板等; 软件会按照用户的要求协调整台计算机的工
在读写文件时,有时希望直接跳到文件中的某处开始读写,这就需要先将文件的读写指针指向该处,然后再进行读写。 ifstream 类和 fstream 类有 seekg 成员函数,可以设置文件读指针的位置; ofstream 类和 fstream 类有 seekp 成员函数,可以设置文件写指针的位置。 所谓“位置”,就是指距离文件开头有多少个字节。文件开头的位置是 0。 这两个函数的原型如下: ostream & seekp (int offset, int mode); istream & seekg (int offset, int mode); mode 代表文件读写指针的设置模
我们知道,getline() 方法定义在 istream 类中,而 fstream 和 ifstream 类继承自 istream 类,因此 fstream 和 ifstream 的类对象可以调用 getline() 成员方法。 当文件流对象调用 getline() 方法时,该方法的功能就变成了从指定文件中读取一行字符串。 该方法有以下 2 种语法格式: istream & getline(char* buf, int bufSize); istream & getline(char* buf, int bufSize, char delim); 其中,第一种语法格式用于从文件输入流
在某些特殊的场景中,我们可能需要逐个读取文件中存储的字符,或者逐个将字符存储到文件中。这种情况下,就可以调用 get() 和 put() 成员方法实现。 C++ ostream::put()成员方法 通过《C++ cout.put()》一节的学习,读者掌握了如何通过执行 cout.put() 方法向屏幕输出单个字符。我们知道,fstream 和 ofstream 类继承自 ostream 类,因此 fstream 和 ofstream 类对象都可以调用 put() 方法。 当 fstream 和 ofstream 文件流对象调用 put() 方法时,该方法的功能就变成了向指定文件中写入单
getline() 方法从 cin 输入流缓冲区中读取一行字符串。在此基础上,getline() 方法还适用于读取指定文件中的一行数据,本节就给大家做详细的讲解。 我们知道,getline() 方法定义在 istream 类中,而 fstream 和 ifstream 类继承自 istream 类,因此 fstream 和 ifstream 的类对象可以调用 getline() 成员方法。 当文件流对象调用 getline() 方法时,该方法的功能就变成了从指定文件中读取一行字符串。该方法有以下 2 种语法格式: istream & getline(char* buf, int bufS
以文本形式读写文件和以二进制形式读写文件的区别,并掌握了用重载的 >> 和 << 运算符实现以文本形式读写文件。在此基础上,本节继续讲解如何以二进制形式读写文件。 举个例子,现在要做一个学籍管理程序,其中一个重要的工作就是记录学生的学号、姓名、年龄等信息。这意味着,我们需要用一个类来表示学生,如下所示: class CStudent { char szName[20]; //假设学生姓名不超过19个字符,以 '\0' 结尾 char szId[l0]; //假设学号为9位,以 '\0' 结尾 int age; //年龄
我们知道,调用 open() 方法打开文件,是文件流对象和文件之间建立关联的过程。那么,调用 close() 方法关闭已打开的文件,就可以理解为是切断文件流对象和文件之间的关联。注意,close() 方法的功能仅是切断文件流与文件之间的关联,该文件流并会被销毁,其后续还可用于关联其它的文件。 close() 方法的用法很简单,其语法格式如下: void close( ) 可以看到,该方法既不需要传递任何参数,也没有返回值。 举个例子: #include <fstream> using namespace std; int main() {
在某些实际场景中,我们经常需要按照一定的格式输出数据,比如输出浮点数时保留 2 位小数,再比如以十六进制的形式输出整数,等等。 对于学过 C 语言的读者应该知道,当使用 printf() 函数输出数据时,可以通过设定一些合理的格式控制符,来达到以指定格式输出数据的目的。例如 %.2f 表示输出浮点数时保留 2 位小数,%#X 表示以十六进制、带 0X 前缀的方式输出整数。 关于 printf() 函数支持的格式控制符,更详细的讲解,可阅读《C语言数据输出大汇总》一节,这里不做详细赘述。 C++ 通常使用 cout 输出数据,和 printf() 函数相比,cout 实现格式化输出数据的方
无论是使用 cout 输出普通数据,用 cout.put() 输出指定字符,还是用 cout.write() 输出指定字符串,数据都会先放到输出流缓冲区,待缓冲区刷新,数据才会输出到指定位置(屏幕或者文件中)。 值得一提的是,当数据暂存于输出流缓冲区中时,我们仍可以对其进行修改。ostream 类中提供有 tellp() 和 seekp() 成员方法,借助它们就可以修改位于输出流缓冲区中的数据。 C++ tellp()成员方法 首先,tellp() 成员方法用于获取当前输出流缓冲区中最后一个字符所在的位置,其语法格式如下: streampos tellp(); 显然,tellp()
对于基本类型的数据以及简单的对象,它们之间的拷贝非常简单,就是按位复制内存。例如: class Base{ public: Base(): m_a(0), m_b(0){ } Base(int a, int b): m_a(a), m_b(b){ } private: int m_a; int m_b; }; int main(){ int a = 10; int b = a; //拷贝 Base obj1(10, 20);
在《C++异常处理》一节中,我们讲到了 C++ 异常处理的流程,具体为: 抛出(Throw)--> 检测(Try) --> 捕获(Catch) 异常必须显式地抛出,才能被检测和捕获到;如果没有显式的抛出,即使有异常也检测不到。在 C++ 中,我们使用 throw 关键字来显式地抛出异常,它的用法为: throw exceptionData; exceptionData 是“异常数据”的意思,它可以包含任意的信息,完全有程序员决定。exceptionData 可以是 int、float、bool 等基本类型,也可以是指针、数组、字符串、结构体、类等聚合类型,请看下面的例子: c
内存管理运算符 new、new[]、delete 和 delete[] 也可以进行重载,其重载形式既可以是类的成员函数,也可以是全局函数。一般情况下,内建的内存管理运算符就够用了,只有在需要自己管理内存时才会重载。 以成员函数的形式重载 new 运算符: void * className::operator new( size_t size ){ //TODO: } 以全局函数的形式重载 new 运算符: void * operator new( size_t size ){ //TODO: } 两种重载形式的返回值相同,都是void *类型,并且都有一个参数,为si
在虚继承中,虚基类是由最终的派生类初始化的,换句话说,最终派生类的构造函数必须要调用虚基类的构造函数。对最终的派生类来说,虚基类是间接基类,而不是直接基类。这跟普通继承不同,在普通继承中,派生类构造函数中只能调用直接基类的构造函数,不能调用间接基类的。 下面我们以菱形继承为例来演示构造函数的调用: #include <iostream> using namespace std; //虚基类A class A{ public: A(int a); protected: int m_a; }; A:
在 C/C++ 中经常会发生数据类型的转换,例如将 int 类型的数据赋值给 float 类型的变量时,编译器会先把 int 类型的数据转换为 float 类型再赋值;反过来,float 类型的数据在经过类型转换后也可以赋值给 int 类型的变量。 数据类型转换的前提是,编译器知道如何对数据进行取舍。例如: int a = 10.9; printf("%d\n", a); 输出结果为 10,编译器会将小数部分直接丢掉(不是四舍五入)。再如: float b = 10; printf("%f\n", b); 输出结果为 10.000000,编译器会自动添
多继承(Multiple Inheritance)是指从多个直接基类中产生派生类的能力,多继承的派生类继承了所有父类的成员。尽管概念上非常简单,但是多个基类的相互交织可能会带来错综复杂的设计问题,命名冲突就是不可回避的一个。 多继承时很容易产生命名冲突,即使我们很小心地将所有类中的成员变量和成员函数都命名为不同的名字,命名冲突依然有可能发生,比如典型的是菱形继承,如下图所示: 图1:菱形继承 类 A 派生出类 B 和类 C,类 D 继承自类 B 和类 C,这个时候类 A 中的成员变量和成员函数继承到类 D 中变成了两份,一份来自 A-->B-->D 这条路径,另一份来自 A-->C-->
C++ 中保留了C语言的 struct 关键字,并且加以扩充。在C语言中,struct 只能包含成员变量,不能包含成员函数。而在C++中,struct 类似于 class,既可以包含成员变量,又可以包含成员函数。 C++中的 struct 和 class 基本是通用的,唯有几个细节不同: 使用 class 时,类中的成员默认都是 private 属性的;而使用 struct 时,结构体中的成员默认都是 public 属性的。 class 继承默认是 private 继承,而 struct 继承默认是 public 继承(《C++继承与派生》一章会讲解继承)。 class 可以使用模板,
C++ 大大增强了对字符串的支持,除了可以使用C风格的字符串,还可以使用内置的 string 类。string 类处理起字符串来会方便很多,完全可以代替C语言中的字符数组或字符串指针。 string 是 C++ 中常用的一个类,它非常重要,我们有必要在此单独讲解一下。 使用 string 类需要包含头文件<string>,下面的例子介绍了几种定义 string 变量(对象)的方法: #include <iostream> #include <string> using namespace std; int main(){ string s1
C++通过 public、protected、private 三个关键字来控制成员变量和成员函数的访问权限,它们分别表示公有的、受保护的、私有的,被称为成员访问限定符。所谓访问权限,就是你能不能使用该类中的成员。 Java、C# 程序员注意,C++ 中的 public、private、protected 只能修饰类的成员,不能修饰类,C++中的类没有共有私有之分。 在类的内部(定义类的代码内部),无论成员被声明为 public、protected 还是 private,都是可以互相访问的,没有访问权限的限制。 在类的外部(定义类的代码之外),只能通过对象访问成员,并且通过对象只能访问 p
C++ 是在C语言的基础上开发的,早期的 C++ 还不完善,不支持命名空间,没有自己的编译器,而是将 C++ 代码翻译成C代码,再通过C编译器完成编译。 这个时候的 C++ 仍然在使用C语言的库,stdio.h、stdlib.h、string.h 等头文件依然有效;此外 C++ 也开发了一些新的库,增加了自己的头文件,例如: iostream.h:用于控制台输入输出头文件。 fstream.h:用于文件操作的头文件。 complex.h:用于复数计算的头文件。 和C语言一样,C++ 头文件仍然以.h为后缀,它们所包含的类、函数、宏等都是全局范围的。 后来 C++ 引入了命名空间的概
本篇文章主要为大家详细介绍了C++如何使用代码对回收站里的文件进行操作,譬如文件的删除与恢复等。 方式一:设置不同的SHFILEOPSTRUCT结构体,调用SHFileOperation函数就可以实现拷贝、删除、移动等文件操作 SHGetSpecialFolderLocation函数: 原型: HRESULT SHGetSpecialFolderLocation(HWND hwnd, int csidl, PIDLIST_ABSOLUTE* ppidl) 该函数用于获取特殊文件夹的物理路径。它接受以下参数: hwnd:可选参数,指定父窗口的句柄。如果不需要与窗口关联,可以设置为NU
首先说方法,在给widget或者frame或者其他任何类型的控件添加背景图时,在样式表中加入如下代码,指定某个控件,设置其背景。 类名 # 控件名 { 填充方式:图片路径 } 例如: QWidget#Widget { border-image: url(:/resource/bg2.png); } 或者 QFrmae#frame { border-image: url(:/resource/bg2.png); } 如果单纯改变样式表,没有指定控件的话,内部的其他控件背景也会改变。 特别提醒:类名 # 控件名,其中控件名要准确,假如你把widget的名字改成了其他,那么这里
注意事项:打包项目前,确保项目能正常运行,不然打包毫无意义。
当前文章介绍的设计的主要功能是利用 SQLite 数据库实现宠物投喂器上传数据的存储,并且支持数据的增删改查操作。其中,宠物投喂器上传的数据包括投喂间隔时间、水温、剩余重量等参数。 实现功能: 创建 SQLite 数据库表,用于存储宠物投喂器上传的数据。 实现对数据库表中数据的插入操作,即将从宠物投喂器接收到的数据存储到数据库中。 实现对数据库表中数据的查询操作,包括按照投喂间隔时间、水温、剩余重量等参数进行筛选,以便用户能够查看特定范围内的数据信息。 实现对数据库表中数据的修改操作,即可以修改已经存储的宠物投喂器上传的数据。 实现对数据库表中数据的删除操作,即可以删除已经存储的宠
QML提供了MapPolyline用于在地图上绘制线段,该线段是实线,因此我使用Canvas自定义绘制的方式在地图上绘制线段
一、项目背景 随着物联网技术不断发展,视频监控系统在各个领域的应用越来越广泛。其中,RTSP(Real Time Streaming Protocol)是一种常用的流媒体传输协议,可以实现对实时音视频数据的传输和播放。为了实现视频监控系统的网络化和智能化,需要开发一个基于RTSP协议的视频流服务器,能够接收前端设备的视频流,并提供RTSP协议的服务,方便客户端进行实时的视频浏览、回放等操作。 在开发过程中,为了提高开发效率、减少开发难度和成本,同时具备良好的可扩展性和可维护性,我选择使用Qt和Live555库来搭建RTSP服务器。Qt是一个跨平台的C++应用程序开发框架,具有完善的GUI界
vcpkg是一个微软开源的C++包管理器。 在以前的开发中,如果在项目中需要使用某个开源库,例如qt,我们需要取官网下载qt的源码,然后构建得到对应的库,然后在项目中链接这个库。对于自己熟悉的库还好说,若是不熟悉的库,如何拉取源码?如何构建?如何在项目中引用?等等这些问题通常会困扰我们,然而,大多数情况下,我们只是使用这个开源库,并不需要关心这个库的构建和编译等问题。如此,在以前的开发过程中,往往会花费不少的时间在引入开源库上。 vcpkg是在背景下开发出来的,通过vcpkg,我们可以在项目中很方便的引入开源库,不用再关心拉取代码、构建开源库的这些事情。 CMake构建的项目中引入开源库
最近项目需要使用google test(以下简称为gtest)作为单元测试框架,但是项目本身过于庞大,main函数无从找起,需要将gtest框架编译成静态库使用。因为项目本身是通过纯c语言编写,而gtest则是一个c++编写的测试框架,其中必然涉及c与c++之间的相互调用。 注意,本文的前提是,c代码采用gcc等c语言编译器编译c代码,采用g++等c++编译器编译c++代码,如果c和c++代码统一使用g++编译,大部分情况是可以实现两者代码相互调用的。以下为踩坑过程的总结o_O||。 c与c++的函数区别 要了解两者之间如何实现相互调用,必须先了解c与c++之间的函数有什么不同。 c+
本篇文章主要为大家详细介绍了C++如何使用代码对回收站里的文件进行操作,譬如文件的删除与恢复等。 方式一:设置不同的SHFILEOPSTRUCT结构体,调用SHFileOperation函数就可以实现拷贝、删除、移动等文件操作 SHGetSpecialFolderLocation函数: 原型: HRESULT SHGetSpecialFolderLocation(HWND hwnd, int csidl, PIDLIST_ABSOLUTE* ppidl) 该函数用于获取特殊文件夹的物理路径。它接受以下参数: hwnd:可选参数,指定父窗口的句柄。如果不需要与窗口关联,可以设置为NU
VSCode是一款微软出的轻量级编辑器,它本身只是一款文本编辑器而已,所有的功能都是以插件扩展的形式所存在,想用什么功能就安装对应的扩展即可,非常方便,同时也支持非常多的主题和图标,外观比较好看,重要的是VSCode支持各大主流操作系统,包括Windows、Linux和Mac OS。所以就选择它作为自己的一款主要的编辑器来使用。
无论是哪一门开发框架,如果涉及到UI这块,肯定需要用到自定义控件,越复杂功能越多的项目,自定义控件的数量就越多,最开始的时候可能每个自定义控件都针对特定的应用场景,甚至里面带了特定的场景的一些设置和处理,随着项目数量的增多,有些控件又专门提取出来共性,做成了通用的自定义控件,意味着控件主要做外观处理,用户根据不同的场景需要,设置不同的外观和规则,就这样搞来搞去搞到现在,已经超过了202个控件,慢慢的积累迭代和更新,历经超过9年的时间不断的完善,尤其是对不同Qt版本、不同编译器、不同操作系统的支持,其中Qt6改动比较大,很多方法或者类改名或者废弃了,需要用类似的方法处理,在改完整个自定义控件大全
自定义在Terminus的终端中编译运行cpp文件: 在Tools->Build System->New Build System中新建编译文件,保存为CppTerminus.sublime-build,替换内容
我们现在有一个需求,我们需要对 g_exceptions 这个 vector 的访问进行同步处理,确保同一时刻只有一个线程能向它插入新的元素。为此我使用了一个 mutex 和一个锁(lock)。mutex 是同步操作的主体,在 C++ 11 的 <mutex> 头文件中,有四种风格的实现: mutex:提供了核心的 lock() unlock() 方法,以及当 mutex 不可用时就会返回的非阻塞方法 try_lock() recursive_mutex:允许同一线程内对同一 mutex 的多重持有 timed_mutex: 与 mutex 类似,但多了 try_lock_for() t
自定义在Terminus的终端中编译运行cpp文件: 在Tools->Build System->New Build System中新建编译文件,保存为CppTerminus.sublime-build
某日二师兄参加XXX科技公司的C++工程师开发岗位第25面: 面试官:array熟悉吗? 二师兄:你说的是原生数组还是std::array? 面试官:你觉得两者有什么区别? 二师兄:区别不是很大,原生数组(非动态数组)和std::array都在栈上开辟空间,初始化的时候需要提供数组长度,且长度不可改变。有一点区别的是,std::array提供了安全的下标访问方法at,当下标越界时会抛出异常。
1、效果展示 我们经常能够在外面看到那种滚动字幕,那么就拿qt来做一个吧。 2、实现思路 实现一个窗口部件,这个窗口部件显示了一串文本标语,它会每t毫秒向左移动一个像素。如果窗口部件比文本宽,那么文本将会被多次重复,直到能够填满整个窗口部件的宽度为止。 3、滚动窗口部件 创建一个滚动窗口类,将其命名为ticker。 3.1、成员变量 我们需要提供几个成员变量。 myText用来表示要显示的文本内容。 offset表示当前偏移量。 myTimerId表示定时器的ID编号。 QString myText; int offset; int myTimer
C/C++ 程序越复杂,内存的管理显得越重要,稍有不慎就会出现泄漏。如果内存泄漏不是很严重,在短时间内对程序不会有太大影响,这也使得内存泄漏问题有很强的隐蔽性,不易被发现。 然而不管内存泄漏多么轻微,当程序长时间运行时,其破坏力是惊人的 - 从性能下降到内存耗尽,甚至会影响其他程序的正常运行。
哈希搜索,也叫散列查找,是一种通过哈希表(散列表)实现快速查找目标元素的算法。哈希搜索算法通常适用于需要快速查找一组数据中是否存在某个元素的场景,其时间复杂度最高为 O(1),而平均情况下的时间复杂度通常相当接近 O(1),因此在实际应用中具有很高的效率和性能。
操作系统: Linux(采用远程服务器主机进行代码编写) 需提前配置(安装)cmake 远程连接服务器进行操作, 直接新建立的终端输入
typedef是在C和C++编程语言中的一个关键字,作用是为现有的数据类型(int、float、char……)创建一个新的名字,目的是为了使代码方便阅读和理解。
一、前言 无论是哪一门开发框架,如果涉及到UI这块,肯定需要用到自定义控件,越复杂功能越多的项目,自定义控件的数量就越多,最开始的时候可能每个自定义控件都针对特定的应用场景,甚至里面带了特定的场景的一些设置和处理,随着项目数量的增多,有些控件又专门提取出来共性,做成了通用的自定义控件,意味着控件主要做外观处理,用户根据不同的场景需要,设置不同的外观和规则,就这样搞来搞去搞到现在,已经超过了202个控件,慢慢的积累迭代和更新,历经超过9年的时间不断的完善,尤其是对不同Qt版本、不同编译器、不同操作系统的支持,其中Qt6改动比较大,很多方法或者类改名或者废弃了,需要用类似的方法处理。
C语言实现DES加密解密 #include "des.h" //移位表 static Table_size const shiftTable[NumberOfKeys] = {1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1}; //E扩展表 static Table_size const eTable[des_key_pc2_standard]={ 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 1
在C++中,如果要让一个程序一直在后台运行并且和终端会话分离,我们可以将其作为守护进程运行,以下是创建C++守护进程的一般步骤。
#和##是宏定义中常用的两个预处理运算符 其中#用于记号串化,##用于记号黏结,下面分别介绍它们。
我们都知道C++完全兼容C语言,C语言的转换方式很简单,可以在任意类型之间转换,但这也恰恰是缺点,因为极其不安全,可能不经意间将指向const对象的指针转换成非const对象的指针,可能将基类对象指针转成了派生类对象的指针,这种转换很容易出bug,需要严格审查代码才能消除这种隐患,但是C这种转换方式不利于我们审查代码,且程序运行时也可能会出bug。
在计算机科学中,优先队列是一种抽象数据类型,它与队列相似,但是每个元素都有一个相关的优先级。C++中的优先队列是一个容器适配器(container adapter),它提供了一种在元素之间维护优先级的方法。