CogView4:智谱开源中文文生图新标杆,中文海报+任意分辨率一键生成
CogView4 是智谱推出的开源文生图模型,支持中英双语输入和任意分辨率图像生成,特别优化了中文文字生成能力,适合广告、创意设计等场景。
Shandu:开源AI研究黑科技!自动挖掘多层级信息,智能生成结构化报告
Shandu 是一款开源的 AI 研究自动化工具,结合 LangChain 和 LangGraph 技术,能够自动化地进行多层次信息挖掘和分析,生成结构化的研究报告,适用于学术研究、市场分析和技术探索等多种场景。
HiveChat:告别模型选择困难!开源ChatGPT聚合神器上线:一键切换10+模型,权限管控全免费
HiveChat 是一款专为中小团队设计的开源 AI 聊天应用,支持多种主流 AI 模型,提供高效的团队沟通和智能辅助功能。
AutoAgents:比LangChain更激进的AI开发神器!自然语言生成AI智能体军团,1句话搞定复杂任务
AutoAgents 是基于大型语言模型的自动智能体生成框架,能够根据用户设定的目标自动生成多个专家角色的智能体,通过协作完成复杂任务。支持动态生成智能体、任务规划与执行、多智能体协作等功能。
Goedel-Prover:专为自动化数学问题的形式证明生成而设计的 LLM,快速解决形式化数学问题
Goedel-Prover 是一款由普林斯顿大学和清华大学等机构联合推出的开源模型,专注于自动化数学问题的形式证明生成。它通过将自然语言数学问题翻译成形式语言(如 Lean 4),显著提升了数学问题的证明效率。
可控文生图:EliGen控制实体的位置细节变化
为文生图模型增加额外的控制条件一直是AIGC社区研究的重点之一,如ControlNet, IP-Adapter等一直是热门可控生成方法。近期,魔搭社区联合浙江大学对实体级可控文生图进行了探索,并开发了EliGen模型。
MangaNinja:开源线稿着色工具,自动匹配图像风格,一键快速上色
MangaNinja 是一款基于参考图像的线稿着色工具,通过创新的补丁重排模块和点驱动控制方案,实现精准颜色匹配和复杂场景处理,适用于漫画、插画和数字艺术创作。
Ingredients:无需额外训练的多ID视频生成框架,通过多张人物照片生成定制视频
Ingredients 是一款基于多ID照片与视频扩散Transformer相结合的定制视频生成框架,能够生成高质量、身份一致且内容灵活的视频。
Cosmos:英伟达生成式世界基础模型平台,加速自动驾驶与机器人开发
Cosmos 是英伟达推出的生成式世界基础模型平台,旨在加速物理人工智能系统的发展,特别是在自动驾驶和机器人领域。
Mathtutor on Groq:AI 数学辅导工具,实时计算并展示解题过程,支持通过语音提出数学问题
Mathtutor on Groq 是一款基于 Groq 架构的 AI 数学辅导工具,支持语音输入数学问题,实时计算并渲染解题过程,适用于代数、微积分等领域的学习和教学辅助。
135_负载均衡:Redis缓存 - 提高缓存命中率的配置与最佳实践
在现代大型语言模型(LLM)部署架构中,缓存系统扮演着至关重要的角色。随着LLM应用规模的不断扩大和用户需求的持续增长,如何构建高效、可靠的缓存架构成为系统性能优化的核心挑战。Redis作为业界领先的内存数据库,因其高性能、丰富的数据结构和灵活的配置选项,已成为LLM部署中首选的缓存解决方案。
128_自我监督变体:SimCLR for Text - 推导对比学习的文本应用,代码实现无标注预训练的独特目标
在大型语言模型快速发展的今天,自我监督学习已成为训练高质量模型的核心技术。然而,传统的掩码语言建模(MLM)和因果语言建模(CLM)方法存在一些局限性,如计算效率低下和上下文利用不充分等问题。对比学习作为一种新兴的自我监督学习范式,通过学习相似性和差异性来提取数据的内在表示,为语言模型预训练提供了新的思路。
96_主动学习提示:用户反馈驱动优化
在人工智能快速发展的今天,大型语言模型(LLM)已经成为各行各业的核心工具。然而,如何让LLM能够持续学习和适应新的需求,如何从用户交互中获取有价值的信息来优化模型性能,已经成为当前研究和应用的热点。主动学习提示(Active Learning Prompts)作为一种新型的提示工程技术,通过用户反馈的闭环系统,实现了模型能力的持续优化和提升。
Kubernetes 和 Docker Swarm:现代 DevOps 的理想容器编排工具
本指南深入解析 Kubernetes 与 Docker Swarm 两大主流容器编排工具,涵盖安装、架构、网络、监控等核心维度,助您根据团队能力与业务需求精准选型,把握云原生时代的技术主动权。
ModelScope魔搭25年8月发布月报
🔥 这个夏天,开源热潮比气温更燃!Qwen3、GLM4.5、混元、Wan2.2、Qwen-Image等重磅模型密集发布,MoE、多模态、Agent、生图视频全爆发,ModelScope 全程 Day0 支持,生态持续进化中!
聚焦“以技术集成支撑单亩价值创造”与“增加值分配机制区块链存证确权”两大核心本质
“振兴链-技术集成科技小院”以技术集成与区块链为核心,推动农业现代化。通过多维度技术整合(如精准农业、物联网等),突破资源约束,最大化单亩产值;同时利用区块链确权存证,建立透明分配机制,解决传统农业中收益不均问题。技术赋能生产,制度重塑分配,实现效率与公平的平衡,助力乡村振兴与产业升级。典型场景显示,该模式可显著提升单亩价值并确保增值公平分配。
开源8B参数全能扩散模型Flex.2-preview:把线稿变商稿,还能边画边改!
Flex.2-preview是Ostris开源的80亿参数文本到图像扩散模型,支持512token长文本输入和多类型控制引导,内置修复功能并兼容主流AI绘画工具链。
Bolt.diy 部署与应用体验全流程总结
按照官方指引,我完成了 Bolt.diy 的部署与测试。通过云原生应用开发平台 CAP,默认配置下部署仅需 1 分钟。首次使用需授权访问控制,部署完成后进入示例应用。注意,资源须通过 HTTPS 提供以支持 WebAssembly 和 SharedArrayBuffer。 随后,在阿里云百炼平台创建 API-KEY 并配置到 Bolt.diy 中,开始尝试提示词创作。例如输入中端 SaaS 首页需求后,Bolt.diy 自动生成代码并展示预览效果,生成效率和质量令人满意。
设计师集体破防!UNO:字节跳动创新AI图像生成框架,多个参考主体同框生成,位置/材质/光影完美对齐
UNO是字节跳动开发的AI图像生成框架,通过渐进式跨模态对齐和通用旋转位置嵌入技术,解决了多主体场景下的生成一致性问题。该框架支持单主体特征保持与多主体组合生成,在虚拟试穿、产品设计等领域展现强大泛化能力。
智源开源FlagOS升级:首次实现DeepSeek-R1满血版多种芯片高效快速部署
近日,DeepSeek-R1以低训练成本实现比肩一流模型的高性能并全面开源,引发了海量部署及场景应用,推理计算需求迅猛增长。
OpenDeepSearch:搜索引擎革命!这个开源深度搜索工具让AI代理直接读懂网页,复杂问题一键拆解
OpenDeepSearch是基于开源推理模型的深度搜索工具,通过语义重排和多源整合优化检索效果,支持与AI代理无缝集成,提供快速和专业两种搜索模式。
ObjectMover:港大联合Adobe打造图像编辑黑科技,移动物体光影自动匹配
香港大学与Adobe联合研发的ObjectMover模型,通过视频生成先验迁移技术,实现图像中物体的自然移动、删除和插入,自动保持光影一致性。
QVQ-Max:阿里通义新一代视觉推理模型!再造多模态「全能眼」秒解图文难题
QVQ-Max是阿里通义推出的新一代视觉推理模型,不仅能解析图像视频内容,还能进行深度推理和创意生成,在数学解题、数据分析、穿搭建议等场景展现强大能力。
Evolving Agents:开源Agent革命!智能体动态进化框架上线,复杂任务一键协同搞定
Evolving Agents 是一个开源的AI Agent管理与进化框架,支持智能代理之间的通信与协作,能够根据语义理解需求动态进化,适用于文档处理、医疗保健、金融分析等多个领域。
基于DeepSeek的智能客服系统安全与隐私保护:构建可信赖的服务
在前四篇文章中,我们完成了智能客服系统的开发、部署、优化和扩展。本文聚焦于安全与隐私保护,探讨如何构建安全可靠的智能客服系统。内容涵盖数据安全(加密、脱敏、备份)、系统安全(输入验证、身份认证、日志监控)和隐私保护(隐私政策、数据最小化、访问控制),确保用户数据安全及系统稳定运行。通过这些措施,我们可以打造一个可信赖的智能客服系统,为用户提供更好的服务体验。
Crawl4LLM:你的模型还在吃垃圾数据?CMU博士开源AI爬虫,自动筛选高价值网页,数据抓取质量飙升300%
Crawl4LLM 是清华大学和卡内基梅隆大学联合开发的智能爬虫系统,通过网页价值评估和优先级队列技术,显著提升大语言模型预训练数据采集效率。
Ola:清华联合腾讯等推出的全模态语言模型!实现对文本、图像、视频和音频的全面理解
Ola 是由清华大学、腾讯 Hunyuan 研究团队和新加坡国立大学 S-Lab 合作开发的全模态语言模型,支持文本、图像、视频和音频输入,并具备实时流式解码功能。
VideoChat-Flash:上海AI Lab开源高效处理超长视频的多模态大模型
VideoChat-Flash 是上海人工智能实验室等机构推出的多模态大模型,通过分层压缩技术高效处理长视频,支持长达数小时的视频输入,推理速度提升5-10倍。
VITRON:开源像素级视觉大模型,同时满足图像与视频理解、生成、分割和编辑等视觉任务
VITRON 是由 Skywork AI、新加坡国立大学和南洋理工大学联合推出的像素级视觉大模型,支持图像与视频的理解、生成、分割和编辑,适用于多种视觉任务。
蚂蚁百宝箱“一箱搞定”会展智能,「桐小乌」为乌镇互联网大会提供全天候一站式向导服务
2025世界互联网大会·乌镇峰会圆满落幕,蚂蚁百宝箱依托智能体开发平台,快速打造会展专属智能体“桐小乌”,实现会前、会中、会后全链路智能化服务。通过“碰一下”打卡、AR导览、智能问答等功能,提升参会体验;基于行业模板与零代码能力,助力展会高效运营,推动智能会展“一箱搞定”。
143_成本优化:Spot实例与预留实例云资源节省计算详解与最佳实践
在云原生时代,成本优化已成为企业IT基础设施管理的核心挑战之一。随着AI和机器学习工作负载的激增,云资源成本占企业IT预算的比例持续上升,如何在保证服务质量的同时实现显著的成本节约,成为技术团队面临的紧迫问题。根据最新的Datadog云成本报告显示,截至2025年,平均有83%的容器支出被闲置资源浪费,而GPU实例支出在过去一年中增长了40%,已占计算成本的14%。在这样的背景下,深入理解和应用Spot实例和预留实例等成本优化策略,对于任何使用云服务的组织都具有重大的经济意义。
126_自定义损失:多目标训练 - 设计加权损失的独特平衡策略
在2025年的大型语言模型(LLM)训练领域,多目标学习已成为提升模型综合性能的关键技术之一。传统的单一损失函数训练方法逐渐显现出局限性,尤其在处理复杂的语言理解、生成和推理任务时。多目标训练通过同时优化多个互补的学习目标,能够显著提升模型的泛化能力、知识保留和任务适应性。
60_隐私保护模型:联邦学习变体
在当今数字化时代,数据隐私保护已成为人工智能发展中不可忽视的核心议题。随着大型语言模型(LLM)规模的不断扩大,其对训练数据的需求也呈指数级增长,这使得数据隐私与模型性能之间的矛盾日益凸显。2025年,联邦学习作为一种创新的分布式学习范式,正在重塑LLM的训练和部署方式,允许多方在保护数据隐私的前提下共同构建高性能模型。
87_文化适配:多语言提示设计 - 分析本地化提示的适配性
在全球化日益深入的今天,大型语言模型(LLM)的多语言能力已成为其核心竞争力之一。随着企业和开发者将AI应用推广到不同语言区域,如何设计适配各文化背景的提示词,确保模型输出既准确又符合目标语言使用者的文化习惯,已成为提示工程领域的重要挑战。文化适配的多语言提示设计不仅涉及简单的语言翻译,更需要深入理解目标文化的思维模式、表达习惯、价值观和禁忌,通过精心设计的提示策略,引导LLM生成真正贴合当地文化语境的内容。