VLDB论文解读|一文剖析阿里云Lindorm数据库在DB for AI领域的探索

本文涉及的产品
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 论文主要针对大规模监控场景下海量时序数据的存储、访问、分析和管理带来的挑战,描述了阿里云多模数据库 Lindorm 带来的一站式解决方案。

文/Lindorm AI团队


引言


日前,在加拿大温哥华召开的数据库领域顶会 VLDB 2023 上,来自阿里云瑶池数据库团队的论文《Lindorm TSDB: A Cloud-native Time-series Database for Large-scale Monitoring Systems》,成功入选VLDB Industrial Track(工业赛道)


论文背景


论文主要针对大规模监控场景下海量时序数据的存储、访问、分析和管理带来的挑战,描述了阿里云多模数据库 Lindorm 带来的一站式解决方案。其中,阿里云数据库团队在架构上大胆探索了数据库集成 AI 引擎的方式,让用户通过低门槛的 SQL 语句就可以对数据库内的时序数据进行训练和推理,并通过结合数据库成熟的对大规模数据的存储、访问和管理的技术,实现了分布式并行、批量和靠近数据的训练和推理优化。


在监控场景中,针对时序数据的智能分析如异常检测、时序预测等是一个普遍需求,现有做法通常需要在外部构建一个数据处理平台,将数据从数据库中拉出来后进行训练,然后将模型进行部署后对外提供时序分析服务。这种做法存在几个问题:


  1. 开发人员需要熟悉时序数据智能分析的相关算法和模型,编写代码实现模型训练和推理,具备较高的开发成本;
  2. 需要搭建一个复杂的数据处理平台,包括从数据库中拉取数据的组件、一个能高效处理大规模时序数据的机器学习平台以及对模型进行管理的组件,具备较高的运维成本;
  3. 从数据库中拉取数据进行模型训练和推理需要耗费大量带宽,并且随着时间推移,当时序数据发生特征变化时,需要频繁重新拉取数据进行模型更新,模型应用的时效性较差。


为了解决上述问题,我们在 Lindorm 数据库中集成了 Lindorm ML 组件,负责对时序数据进行 In-DB 的训练和推理。如下图所示,用户可以通过一个 CREATE MODEL 的 SQL 在数据库中创建(训练)一个机器学习模型,然后通过另外一个 SQL 函数使用模型对指定数据进行推理。


image.png


由于时序数据的智能分析具有时间线间独立的特点,Lindorm ML 组件利用了 Lindorm TSDB 对时序数据按照时间线维度进行存储的特性以及分布式的组织和管理方式将对应的机器学习模型也进行了分区(对用户透明),从而能够实现时间线维度的计算及分布式并行训练和推理优化。进一步的,在单机节点上,时序分析所需要的预处理和训练、推理等相关的算法被设计实现成 TSDB 流式执行引擎的算子,在时序数据从存储引擎中被扫描出来后就进行计算,再结合查询下推等特性,实现了靠近数据的计算优化,大大减少了数据在数据库内节点间的传输带宽消耗。


image.png


由于减少了从数据库中进行数据拉取的开销,通过和外部进行时序分析的实验对比,Lindorm ML 在训练和推理性能上有 2 倍以上的提升。更重要的是,Lindorm ML 内置了一些成熟的时序分析算法,用户直接通过几个 SQL 就能使用这些机器学习算法对自己的数据进行分析,门槛得到极大的下降。


image.png


架构再升级!Lindorm AI引擎支持大模型应用构建


随着 ChatGPT 带来的 AI 热潮及对模型即服务(Model as a Service)趋势的拥抱,Lindorm 团队将 Lindorm ML 组件升级成了 AI 引擎,除了对时序数据进行建模分析之外,还支持了预训练 AI 模型在数据库内的灵活导入,用于对数据库内存储的多模数据进行分析、理解和处理,从而对用户提供一站式 AI 数据服务。


结合大语言模型(LLM)的能力在企业内部知识库场景进行检索和问答是目前比较火热的 AI 应用,在这其中,除了 LLM 之外,还有两个比较关键的组件,其一是向量数据库,负责通过向量检索技术实现相似文本检索,为 LLM 补充上下文。还有一个则是对知识库文档进行加工和处理的服务,包括对文档进行预处理、切片及向量化(Embedding)。现有解决方案往往需要开发者基于一些流行框架如 LangChain 等来实现,尽管这些框架已经提供了基础的功能及对一些可选组件或服务的对接封装,仍然不是开箱即用的,直接基于它们来搭建一个知识问答应用是比较难真正落地的。一来这些框架具备一定的上手门槛,开发者首先需要学习框架的使用,并对其提供的功能进行深入对比(比如多种文本切片方法)和调优,这些预置的方法在效果上往往达不到生产落地的要求。此外,开发者还需要解决这个复杂架构中如向量数据库、Embedding服务的部署和运维的问题,以及知识库文档的更新等问题。针对这个场景, Lindorm AI 引擎提供了一站式的解决方案用户只需要在数据库中存入知识库文档,由数据库自动完成文档的预处理、切片、向量化等过程,通过一个 SQL 函数就能实现针对文档的语义检索,及结合 LLM 进行问答。利用数据库成熟的数据处理能力,在用户看来,只是针对知识库文档建了一个特殊的 AI 驱动的语义索引,索引建好之后就可以进行语义检索及问答,文档的新增、更新、删除这些过程对用户来说都是透明的。作为一个云服务, Lindorm AI 引擎提供的这个解决方案已经在云上业务中落地


除了私域数据知识问答场景之外,Lindorm AI 引擎还支持一站式多模态检索解决方案,包括通过文本检索图片,以及以图搜图等。和知识问答场景类似,用户不再需要和难以理解的向量以及多个服务打交道,只需要将图片本身(或图片的地址)存储于数据库中,数据库会自动利用 AI 模型的能力对图片进行一站式向量化、存储以及检索,大大简化业务的整体架构,提升开发和运维效率。


结语


从上述知识问答和多模态检索解决方案中可以看到,结合 AI 的能力,从某种意义上,使得数据库对于文本、图像等这类非结构化数据,实现了从简单的“存储和处理”到“理解和应用”的跃迁。在未来,除了数据本身之外,利用 AI 对数据资产进行理解和管理也会是我们继续探索的一个重要方向。正如Lindorm数据库的宗旨是“让数据存得起、看得见、算得好”,我们希望能让更多用户可以更好的用好数据,使得数据价值不断放大。



阿里云Lindorm数据库推出智能问答体验版试用活动啦!

🎉 秒级开通,仅60元/月。支持用户直接上传知识库文件,便捷构建具备私域知识+LLM的智能问答系统,快来试用吧!

点击链接即刻开启试用~

相关文章
|
16天前
|
人工智能 JSON API
阿里云文档智能 & RAG解决方案:提升AI大模型业务理解与应用
阿里云推出的文档智能 & RAG解决方案,旨在通过先进的文档解析技术和检索增强生成(RAG)方法,显著提升人工智能大模型在业务场景中的应用效果。该方案通过文档智能(Document Mind)技术将非结构化文档内容转换为结构化数据,提取文档的层级树、样式和版面信息,并输出为Markdown和Json格式,为RAG提供语义分块策略。这一过程不仅解决了文档内容解析错误和切块丢失语义信息的问题,还优化了输出LLM友好的Markdown信息。方案的优势在于其多格式支持能力,能够处理包括Office文档、PDF、Html、图片在内的主流文件类型,返回文档的样式、版面信息和层级树结构。
75 2
|
20天前
|
存储 人工智能 数据可视化
高效率,低成本!且看阿里云AI大模型如何帮助企业提升客服质量和销售转化率
在数字化时代,企业面临海量客户对话数据处理的挑战。阿里云推出的“AI大模型助力客户对话分析”解决方案,通过先进的AI技术和智能化分析,帮助企业精准识别客户意图、发现服务质量问题,并生成详尽的分析报告和可视化数据。该方案采用按需付费模式,有效降低企业运营成本,提升客服质量和销售转化率。
高效率,低成本!且看阿里云AI大模型如何帮助企业提升客服质量和销售转化率
|
16天前
|
人工智能 Cloud Native 数据管理
媒体声音|重磅升级,阿里云发布首个“Data+AI”驱动的一站式多模数据平台
在2024云栖大会上,阿里云瑶池数据库发布了首个一站式多模数据管理平台DMS:OneMeta+OneOps。该平台由Data+AI驱动,兼容40余种数据源,实现跨云数据库、数据仓库、数据湖的统一数据治理,帮助用户高效提取和分析元数据,提升业务决策效率10倍。DMS已服务超10万企业客户,降低数据管理成本高达90%。
|
16天前
|
存储 人工智能 调度
阿里云吴结生:高性能计算持续创新,响应数据+AI时代的多元化负载需求
在数字化转型的大潮中,每家公司都在积极探索如何利用数据驱动业务增长,而AI技术的快速发展更是加速了这一进程。
|
10天前
|
人工智能 架构师
活动火热报名中|阿里云&Elastic:AI Search Tech Day
2024年11月22日,阿里云与Elastic联合举办“AI Search Tech Day”技术思享会活动。
153 2
|
11天前
|
存储 人工智能 大数据
阿里云吴结生:高性能计算持续创新,响应数据+AI时代的多元化负载需求
在数字化转型的大潮中,每家公司都在积极探索如何利用数据驱动业务增长,而AI技术的快速发展更是加速了这一进程。
|
18天前
|
存储 人工智能 弹性计算
对话阿里云吴结生:AI时代,云上高性能计算的创新发展
在阿里云智能集团副总裁,弹性计算产品线负责人、存储产品线负责人 吴结生看来,如今已经有很多行业应用了高性能计算,且高性能计算的负载正呈现出多样化发展的趋势,“当下,很多基础模型的预训练、自动驾驶、生命科学,以及工业制造、半导体芯片等行业和领域都应用了高性能计算。”吴结生指出。
|
14天前
|
人工智能 Kubernetes 云计算
第五届CID大会成功举办,阿里云基础设施加速AI智能产业发展!
2024年10月19日,第五届中国云计算基础架构开发者大会(CID)在北京朗丽兹西山花园酒店成功举办。本次大会汇聚了来自云计算领域的众多精英,不同背景的与会者齐聚一堂,共同探讨云计算技术的最新发展与未来趋势。
|
15天前
|
人工智能 Kubernetes 云计算
第五届CID大会成功举办,阿里云基础设施加速AI智能产业发展!
第五届中国云计算基础架构开发者大会(CID)于2024年10月19日在北京成功举办。大会汇聚了300多位现场参会者和超过3万名在线观众,30余位技术专家进行了精彩分享,涵盖高效部署大模型推理、Knative加速AI应用Serverless化、AMD平台PMU虚拟化技术实践、Kubernetes中全链路GPU高效管理等前沿话题。阿里云的讲师团队通过专业解读,为与会者带来了全新的视野和启发,推动了云计算技术的创新发展。
|
15天前
|
机器学习/深度学习 人工智能 弹性计算
阿里云AI服务器价格表_GPU服务器租赁费用_AI人工智能高性能计算推理
阿里云AI服务器提供多种配置选项,包括CPU+GPU、CPU+FPGA等组合,支持高性能计算需求。本文汇总了阿里云GPU服务器的价格信息,涵盖NVIDIA A10、V100、T4、P4、P100等多款GPU卡,适用于人工智能、机器学习和深度学习等场景。详细价格表和实例规格见文内图表。