TuGraph Analytics云原生部署:基于K8S Operator的轻量级作业启动方案

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: TuGraph Analytics作业可以通过Console提交部署到K8S集群,但Console是一个独立的Web系统,部署形态上相对较重。在平台工具系统接入或大数据生态集成场景中,需要更轻量级的快速接入TuGraph Analytics的方案。

作者:丁一

背景

TuGraph Analytics作业可以通过Console提交部署到K8S集群,但Console是一个独立的Web系统,部署形态上相对较重。在平台工具系统接入或大数据生态集成场景中,需要更轻量级的快速接入TuGraph Analytics的方案。

我们新增了模块geaflow-kubernetes-operator,可以通过更轻量级的YAML文件配置方式,对TuGraph Analytics作业进行描述配置。同时更方便地监控和管理集群下的所有TuGraph Analytics作业,并通过CR(Custom Resource)的创建/修改/删除来管理作业的生命周期和元信息,可以实现只通过kubectl命令实现任务操纵。我们也提供了一个实时dashboard页面,可以方便地白屏化查看所有作业状态和信息。

部署K8S Operator

TuGraph Analytics提供了geaflow-kubernetes-operator模块,可通过Helm命令一键部署到K8S。部署完成中,会向K8S集群注册一个名为geaflowjob的自定义资源。(相对于K8S内置pod、service、deployment等系统资源而言)
安装完成后,我们只需要编写一个CR的YAML配置文件提交给K8S,就可以自动拉起作业了。

  • 执行以下命令构建Operator镜像,项目代码构建要求JDK11版本,因此需要单独切换JDK版本编译构建。
$ ./build-operator.sh
  • 进入项目目录geaflow-kubernetes-operator下,通过Helm一键安装operator。
$ helm install geaflow-kubernetes-operator helm/geaflow-kubernetes-operator

  • 在K8S Dashboard中查看pod是否正常运行。

提交作业

K8S Operator成功部署并运行后,就可以编写CR的YAML文件进行作业提交了。

$ kubectl apply geaflow-example.yml

这里使用项目内置示例作业举例,其YAML文件格式如下:

apiVersion: geaflow.antgroup.com/v1
kind: GeaflowJob
metadata:
    # 作业名称
  name: geaflow-example
spec:
    # 作业使用的GeaFlow镜像
  image: geaflow:0.1
  # 作业拉取镜像的策略
  imagePullPolicy: IfNotPresent
  # 作业使用的k8s service account
  serviceAccount: geaflow
  # 作业java进程的主类
  entryClass: com.antgroup.geaflow.example.graph.statical.compute.sssp.SSSP
  clientSpec:
    # client pod相关的资源设置
    resource:
      cpuCores: 1
      memoryMb: 1000
      jvmOptions: -Xmx800m,-Xms800m,-Xmn300m
  masterSpec:
    # master pod相关的资源设置
    resource:
      cpuCores: 1
      memoryMb: 1000
      jvmOptions: -Xmx800m,-Xms800m,-Xmn300m
  driverSpec:
    # driver pod相关的资源设置
    resource:
      cpuCores: 1
      memoryMb: 1000
      jvmOptions: -Xmx800m,-Xms800m,-Xmn300m
    # driver个数
    driverNum: 1
  containerSpec:
    # container pod相关的资源设置
    resource:
      cpuCores: 1
      memoryMb: 1000
      jvmOptions: -Xmx800m,-Xms800m,-Xmn300m
    # container个数
    containerNum: 1
    # 每个container内部的worker个数(线程数)
    workerNumPerContainer: 4
  userSpec:
    # 作业指标相关配置
    metricConfig:
      geaflow.metric.reporters: slf4j
      geaflow.metric.stats.type: memory
    # 作业存储相关配置
    stateConfig:
      geaflow.file.persistent.type: LOCAL
          geaflow.store.redis.host: host.minikube.internal
      geaflow.store.redis.port: 6379
    # 用户自定义参数配置
    additionalArgs:
      geaflow.system.state.backend.type: MEMORY

K8S环境上的作业强依赖于Redis组件,若你已经部署了Redis,则可以在geaflow-example.yaml中提供Redis主机和端口号。你也可以通过Docker快速启动一个本地Redis服务,默认地址host.minikube.internal可直接访问。

docker pull redis:latest
docker run -p 6379:6379 --name geaflow_redis redis:latest

提交API任务

对于提交HLA任务的情况,需要额外注意以下几个参数:

  • spec.entryClass:必填。
  • spec.udfJars:选填,一般填写API任务的JAR文件的url地址。
spec:
    # 必填
    entryClass: com.example.MyEntryClass
    # 可选
    udfJars: 
      - name: myJob.jar
        url: http://url-path-to-myJob.jar

提交DSL任务

对于提交DSL任务的情况,需要额外注意以下几个参数:

  • spec.entryClass:不填,留空(用于区分是API作业还是DSL作业)。
  • spec.gqlFile:必填,请填写自己文件的名称和url地址。
  • spec.udfJars:选填,如需UDF的话,请填写UDF JAR文件的url地址。
spec:
    # 不填
    # entryClass: com.example.MyEntryClass
    # 必填
  gqlFile:
    # name必须填写正确,否则无法找到对应文件
    name: myGql.gql
    url: http://url-path-to-myGql.gql
    # 可选
    udfJars: 
      - name: myUdf.jar
        url: http://url-path-to-myUdf.jar

关于DSL任务和HLA任务的更多参数,我们在项目目录geaflow-kubernetes-operator/example目录中准备了两个demo作业供大家参考,请分别参考项目中的示例文件:

  • example/example-dsl.yml
  • example/example-hla.yml。

查看作业状态

可以访问K8S Dashboard查看pod是否被拉起,执行以下命令可以查看CR的状态是否已经正常运行。

$ kubectl get geaflowjob geaflow-example

若在提交过程中失败,则状态会变为FAILED。若需定位原因,可通过以下命令查看。

$ kubectl get geaflowjobs geaflow-example -o yaml

查看集群状态

Operator自带一个前端页面,可以展示集群的基本信息、所有作业的状态、错误信息、以及完整的配置,并做了分类统计。可以通过访问Operator的service或者pod的8089端口来打开页面。

备注

在minikube环境中,需要通过portforward将Operator的pod代理到本地端口(默认为8089端口),请将operator-pod-name替换为实际的operator pod名称,然后通过浏览器访问localhost:8089即可打开页面。

$kubectl port-forward ${operator-pod-name} 8089:8089

至此,我们完成了TuGraph Analytics作业的轻量级提交和运行!是不是超简单!快来试一试吧!

GeaFlow(品牌名TuGraph-Analytics) 已正式开源,欢迎大家关注!!!

欢迎给我们 Star 哦! GitHub👉 https://github.com/TuGraph-family/tugraph-analytics

更多精彩内容,关注我们的博客 https://geaflow.github.io/

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
2月前
|
存储 Kubernetes 开发工具
使用ArgoCD管理Kubernetes部署指南
ArgoCD 是一款基于 Kubernetes 的声明式 GitOps 持续交付工具,通过自动同步 Git 存储库中的配置与 Kubernetes 集群状态,确保一致性与可靠性。它支持实时同步、声明式设置、自动修复和丰富的用户界面,极大简化了复杂应用的部署管理。结合 Helm Charts,ArgoCD 提供模块化、可重用的部署流程,显著减少人工开销和配置错误。对于云原生企业,ArgoCD 能优化部署策略,提升效率与安全性,是实现自动化与一致性的理想选择。
97 0
|
14天前
|
存储 Kubernetes 异构计算
Qwen3 大模型在阿里云容器服务上的极简部署教程
通义千问 Qwen3 是 Qwen 系列最新推出的首个混合推理模型,其在代码、数学、通用能力等基准测试中,与 DeepSeek-R1、o1、o3-mini、Grok-3 和 Gemini-2.5-Pro 等顶级模型相比,表现出极具竞争力的结果。
|
17天前
|
人工智能 运维 监控
阿里云携手神州灵云打造云内网络性能监测标杆 斩获中国信通院高质量数字化转型十大案例——金保信“云内网络可观测”方案树立云原生运维新范式
2025年,金保信社保卡有限公司联合阿里云与神州灵云申报的《云内网络性能可观测解决方案》入选高质量数字化转型典型案例。该方案基于阿里云飞天企业版,融合云原生引流技术和流量“染色”专利,解决云内运维难题,实现主动预警和精准观测,将故障排查时间从数小时缩短至15分钟,助力企业降本增效,形成可跨行业复制的数字化转型方法论。
|
2月前
|
存储 Kubernetes 监控
K8s集群实战:使用kubeadm和kuboard部署Kubernetes集群
总之,使用kubeadm和kuboard部署K8s集群就像回归童年一样,简单又有趣。不要忘记,技术是为人服务的,用K8s集群操控云端资源,我们不过是想在复杂的世界找寻简单。尽管部署过程可能遇到困难,但朝着简化复杂的目标,我们就能找到意义和乐趣。希望你也能利用这些工具,找到你的乐趣,满足你的需求。
215 33
|
2月前
|
Kubernetes 开发者 Docker
集群部署:使用Rancher部署Kubernetes集群。
以上就是使用 Rancher 部署 Kubernetes 集群的流程。使用 Rancher 和 Kubernetes,开发者可以受益于灵活性和可扩展性,允许他们在多种环境中运行多种应用,同时利用自动化工具使工作负载更加高效。
101 19
|
2月前
|
人工智能 分布式计算 调度
打破资源边界、告别资源浪费:ACK One 多集群Spark和AI作业调度
ACK One多集群Spark作业调度,可以帮助您在不影响集群中正在运行的在线业务的前提下,打破资源边界,根据各集群实际剩余资源来进行调度,最大化您多集群中闲置资源的利用率。
|
2月前
|
存储 测试技术 对象存储
使用容器服务ACK快速部署QwQ-32B模型并实现推理智能路由
阿里云最新发布的QwQ-32B模型,通过强化学习大幅度提升了模型推理能力。QwQ-32B模型拥有320亿参数,其性能可以与DeepSeek-R1 671B媲美。
|
3月前
|
存储 Kubernetes 测试技术
企业级LLM推理部署新范式:基于ACK的DeepSeek蒸馏模型生产环境落地指南
企业级LLM推理部署新范式:基于ACK的DeepSeek蒸馏模型生产环境落地指南
136 12
|
3月前
|
Cloud Native Serverless 数据中心
阿里云ACK One:注册集群支持ACS算力——云原生时代的计算新引擎
阿里云ACK One:注册集群支持ACS算力——云原生时代的计算新引擎
78 10
|
3月前
|
人工智能 Kubernetes 异构计算
大道至简-基于ACK的Deepseek满血版分布式推理部署实战
大道至简-基于ACK的Deepseek满血版分布式推理部署实战
153 5

推荐镜像

更多