TuGraph Analytics云原生部署:基于K8S Operator的轻量级作业启动方案

本文涉及的产品
云原生多模数据库 Lindorm,多引擎 多规格 0-4节点
云数据库 Redis 版,社区版 2GB
推荐场景:
搭建游戏排行榜
云数据库 MongoDB,通用型 2核4GB
简介: TuGraph Analytics作业可以通过Console提交部署到K8S集群,但Console是一个独立的Web系统,部署形态上相对较重。在平台工具系统接入或大数据生态集成场景中,需要更轻量级的快速接入TuGraph Analytics的方案。

作者:丁一

背景

TuGraph Analytics作业可以通过Console提交部署到K8S集群,但Console是一个独立的Web系统,部署形态上相对较重。在平台工具系统接入或大数据生态集成场景中,需要更轻量级的快速接入TuGraph Analytics的方案。

我们新增了模块geaflow-kubernetes-operator,可以通过更轻量级的YAML文件配置方式,对TuGraph Analytics作业进行描述配置。同时更方便地监控和管理集群下的所有TuGraph Analytics作业,并通过CR(Custom Resource)的创建/修改/删除来管理作业的生命周期和元信息,可以实现只通过kubectl命令实现任务操纵。我们也提供了一个实时dashboard页面,可以方便地白屏化查看所有作业状态和信息。

部署K8S Operator

TuGraph Analytics提供了geaflow-kubernetes-operator模块,可通过Helm命令一键部署到K8S。部署完成中,会向K8S集群注册一个名为geaflowjob的自定义资源。(相对于K8S内置pod、service、deployment等系统资源而言)
安装完成后,我们只需要编写一个CR的YAML配置文件提交给K8S,就可以自动拉起作业了。

  • 执行以下命令构建Operator镜像,项目代码构建要求JDK11版本,因此需要单独切换JDK版本编译构建。
$ ./build-operator.sh
  • 进入项目目录geaflow-kubernetes-operator下,通过Helm一键安装operator。
$ helm install geaflow-kubernetes-operator helm/geaflow-kubernetes-operator

  • 在K8S Dashboard中查看pod是否正常运行。

提交作业

K8S Operator成功部署并运行后,就可以编写CR的YAML文件进行作业提交了。

$ kubectl apply geaflow-example.yml

这里使用项目内置示例作业举例,其YAML文件格式如下:

apiVersion: geaflow.antgroup.com/v1
kind: GeaflowJob
metadata:
    # 作业名称
  name: geaflow-example
spec:
    # 作业使用的GeaFlow镜像
  image: geaflow:0.1
  # 作业拉取镜像的策略
  imagePullPolicy: IfNotPresent
  # 作业使用的k8s service account
  serviceAccount: geaflow
  # 作业java进程的主类
  entryClass: com.antgroup.geaflow.example.graph.statical.compute.sssp.SSSP
  clientSpec:
    # client pod相关的资源设置
    resource:
      cpuCores: 1
      memoryMb: 1000
      jvmOptions: -Xmx800m,-Xms800m,-Xmn300m
  masterSpec:
    # master pod相关的资源设置
    resource:
      cpuCores: 1
      memoryMb: 1000
      jvmOptions: -Xmx800m,-Xms800m,-Xmn300m
  driverSpec:
    # driver pod相关的资源设置
    resource:
      cpuCores: 1
      memoryMb: 1000
      jvmOptions: -Xmx800m,-Xms800m,-Xmn300m
    # driver个数
    driverNum: 1
  containerSpec:
    # container pod相关的资源设置
    resource:
      cpuCores: 1
      memoryMb: 1000
      jvmOptions: -Xmx800m,-Xms800m,-Xmn300m
    # container个数
    containerNum: 1
    # 每个container内部的worker个数(线程数)
    workerNumPerContainer: 4
  userSpec:
    # 作业指标相关配置
    metricConfig:
      geaflow.metric.reporters: slf4j
      geaflow.metric.stats.type: memory
    # 作业存储相关配置
    stateConfig:
      geaflow.file.persistent.type: LOCAL
          geaflow.store.redis.host: host.minikube.internal
      geaflow.store.redis.port: 6379
    # 用户自定义参数配置
    additionalArgs:
      geaflow.system.state.backend.type: MEMORY

K8S环境上的作业强依赖于Redis组件,若你已经部署了Redis,则可以在geaflow-example.yaml中提供Redis主机和端口号。你也可以通过Docker快速启动一个本地Redis服务,默认地址host.minikube.internal可直接访问。

docker pull redis:latest
docker run -p 6379:6379 --name geaflow_redis redis:latest

提交API任务

对于提交HLA任务的情况,需要额外注意以下几个参数:

  • spec.entryClass:必填。
  • spec.udfJars:选填,一般填写API任务的JAR文件的url地址。
spec:
    # 必填
    entryClass: com.example.MyEntryClass
    # 可选
    udfJars: 
      - name: myJob.jar
        url: http://url-path-to-myJob.jar

提交DSL任务

对于提交DSL任务的情况,需要额外注意以下几个参数:

  • spec.entryClass:不填,留空(用于区分是API作业还是DSL作业)。
  • spec.gqlFile:必填,请填写自己文件的名称和url地址。
  • spec.udfJars:选填,如需UDF的话,请填写UDF JAR文件的url地址。
spec:
    # 不填
    # entryClass: com.example.MyEntryClass
    # 必填
  gqlFile:
    # name必须填写正确,否则无法找到对应文件
    name: myGql.gql
    url: http://url-path-to-myGql.gql
    # 可选
    udfJars: 
      - name: myUdf.jar
        url: http://url-path-to-myUdf.jar

关于DSL任务和HLA任务的更多参数,我们在项目目录geaflow-kubernetes-operator/example目录中准备了两个demo作业供大家参考,请分别参考项目中的示例文件:

  • example/example-dsl.yml
  • example/example-hla.yml。

查看作业状态

可以访问K8S Dashboard查看pod是否被拉起,执行以下命令可以查看CR的状态是否已经正常运行。

$ kubectl get geaflowjob geaflow-example

若在提交过程中失败,则状态会变为FAILED。若需定位原因,可通过以下命令查看。

$ kubectl get geaflowjobs geaflow-example -o yaml

查看集群状态

Operator自带一个前端页面,可以展示集群的基本信息、所有作业的状态、错误信息、以及完整的配置,并做了分类统计。可以通过访问Operator的service或者pod的8089端口来打开页面。

备注

在minikube环境中,需要通过portforward将Operator的pod代理到本地端口(默认为8089端口),请将operator-pod-name替换为实际的operator pod名称,然后通过浏览器访问localhost:8089即可打开页面。

$kubectl port-forward ${operator-pod-name} 8089:8089

至此,我们完成了TuGraph Analytics作业的轻量级提交和运行!是不是超简单!快来试一试吧!

GeaFlow(品牌名TuGraph-Analytics) 已正式开源,欢迎大家关注!!!

欢迎给我们 Star 哦! GitHub👉 https://github.com/TuGraph-family/tugraph-analytics

更多精彩内容,关注我们的博客 https://geaflow.github.io/

相关实践学习
容器服务Serverless版ACK Serverless 快速入门:在线魔方应用部署和监控
通过本实验,您将了解到容器服务Serverless版ACK Serverless 的基本产品能力,即可以实现快速部署一个在线魔方应用,并借助阿里云容器服务成熟的产品生态,实现在线应用的企业级监控,提升应用稳定性。
云原生实践公开课
课程大纲 开篇:如何学习并实践云原生技术 基础篇: 5 步上手 Kubernetes 进阶篇:生产环境下的 K8s 实践 相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
2月前
|
Ubuntu Cloud Native 测试技术
百度搜索:蓝易云【云原生之使用Docker部署ubuntu测试环境】
请注意,以上步骤仅是简单的使用Docker部署Ubuntu测试环境的示例。在实际应用中,您可能需要根据测试需求和应用场景进行更多的配置和优化。同时,在退出容器时,容器并未删除,您可以使用 `docker rm <容器名称>`命令来删除容器。在进行测试时,请谨慎操作,并确保对Docker的使用有一定的了解,以避免不必要的问题。
28 2
|
2月前
|
存储 Cloud Native Docker
百度搜索:蓝易云【云原生之使用Docker部署Notepad个人任务管理工具】
这样,你就成功地使用Docker部署了Notepad个人任务管理工具。通过Docker部署Notepad可以使应用的安装和配置更加便捷,并且可以隔离应用环境,避免影响到宿主机的系统。希望以上教程对你有所帮助!如果你有其他问题,请随时继续提问。
37 0
|
26天前
|
Prometheus 监控 Kubernetes
如何用 Prometheus Operator 监控 K8s 集群外服务?
如何用 Prometheus Operator 监控 K8s 集群外服务?
|
2月前
|
Kubernetes Cloud Native 调度
云原生技术专题 | 云原生容器编排问题盘点,总结分享年度使用Kubernetes的坑和陷阱
随着云原生的兴起,越来越多的应用选择基于Kubernetes进行部署,可以说Kubernetes 是最流行的容器编排和部署平台。它的强大功能特性,可以保障在生产中可靠地运行容器化应用程序,相关的DevOps等工具也应运而生,下面就是小编简单化了一个Kubernetes的逻辑架构图。
305 9
云原生技术专题 | 云原生容器编排问题盘点,总结分享年度使用Kubernetes的坑和陷阱
|
9天前
|
IDE Cloud Native 开发工具
云原生之在Docker环境下部署Atheos云IDE平台
【2月更文挑战第3天】云原生之在Docker环境下部署Atheos云IDE平台
335 1
|
2月前
|
Cloud Native 关系型数据库 分布式数据库
《永恒岛》引入云原生数据库PolarDB实现游戏全球部署和更流畅的游戏体验
三九互娱通过采用阿里云PolarDB作为核心数据库,备份和恢复效率提高10倍以上
61 1
|
2月前
|
Kubernetes Cloud Native 网络协议
【云原生】Kubernetes介绍
【云原生】Kubernetes介绍
27 1
|
2月前
|
关系型数据库 MySQL 数据库
百度搜索:蓝易云【云原生之使用Docker部署mysql数据库教程】
这样,你就成功地使用Docker部署了MySQL数据库。通过Docker部署MySQL可以使数据库的安装和配置更加便捷,并且可以隔离数据库环境,避免影响到宿主机的系统。希望以上教程对你有所帮助!如果你有其他问题,请随时继续提问。
267 0
|
2月前
|
人工智能 Cloud Native PyTorch
阿里云 ACK 云原生 AI 套件中的分布式弹性训练实践
阿里云 ACK 云原生 AI 套件中的分布式弹性训练实践
148621 4
|
2月前
|
人工智能 Cloud Native 调度
为大模型工程提效,基于阿里云 ACK 的云原生 AI 工程化实践
本文主要介绍了解析云原生 AI 所遇到的技术挑战和应对方案,随后介绍云原生 AI 领域的关键技术与架构细节,最后分享我们在 ACK 的相关经验及工程实践。

相关产品

  • 云原生多模数据库 Lindorm
  • 云数据库 Redis 版
  • 云数据库 MongoDB 版