云原生可观测
云原生可观测基于Prometheus、Grafana 、OpenTelemetry 等核心产品, 形成指标、链路存储分析、异构数据源集成的数据层, 通过标准PromQL和SQL提供大盘展示、告警与探索能力。
扩展AlertManager集成钉钉助力Istio on ACK可观测性监控能力
阿里云容器服务Kubernetes(简称ACK)支持一键部署Istio,可以参考[文档](https://help.aliyun.com/document_detail/89805.html)在ACK上部署使用Isito。Istio on ACK提供了丰富的监控能力,为网格中的服务收集遥测数据,其中Mixer是负责提供策略控制和遥测收集的Istio组件。使用Prometheus进行监控是Istio
Grafana Loki,轻量级日志系统
本文介绍了基于Grafana、Loki和Alloy构建的轻量级日志系统。Loki是一个由Grafana Labs开发的日志聚合系统,具备高可用性和多租户支持,专注于日志而非指标,通过标签索引而非内容索引实现高效存储。Alloy则是用于收集和转发日志至Loki的强大工具。文章详细描述了系统的架构、组件及其工作流程,并提供了快速搭建指南,包括准备步骤、部署命令及验证方法。此外,还展示了如何使用Grafana查看日志,以及一些基本的LogQL查询示例。最后,作者探讨了Loki架构的独特之处,提出了“巨型单体模块化”的概念,即一个应用既可单体部署也可分布式部署,整体协同实现全部功能。
AIOps已逝,欢迎进入AgenticOps(运维智能体)时代
GenAI和智能体技术的爆发,为IT运维打开了一扇新的大门,一个更具主动性、自治性和协作性的新时代已经来临,这就是AgenticOps(基于智能体的IT运维)。
MCP Server 开发实战 | 大模型无缝对接 Grafana
以 AI 世界的“USB-C”标准接口——MCP(Model Context Protocol)为例,演示如何通过 MCP Server 实现大模型与阿里云 Grafana 服务的无缝对接,让智能交互更加高效、直观。
可观测可回溯 | Continuous Profiling 实践解析
我们定位异常时,时常无法知晓代码内部发生了什么,因此无从谈起修复和改善代码。Continuous Profiling帮助开发者全面掌握、回溯生产环节代码执行细节,增强可观测性。
SLS 重磅升级:超大规模数据实现完全精确分析
SLS 全新推出的「SQL 完全精确」模式,通过“限”与“换”的策略切换,在快速分析与精确计算之间实现平衡,满足用户对于超大数据规模分析结果精确的刚性需求。标志着其在超大规模日志数据分析领域再次迈出了重要的一步。
MES系统软件体系架构及应用
MES系统是数字化车间的核心。MES通过数字化生产过程控制,借助自动化和智能化技术手段,实现车间制造控制智能化、生产过程透明化、制造装备数控化和生产信息集成化。生产管理MES系统主要包括车间管理系统、质量管理系统、资源管理系统及数据采集和分析系统等,由技术平台层、网络层以及设备层实现。
当 OpenTelemetry 遇上阿里云 Prometheus
本文以构建系统可观测(重点为指标监控体系)为切入点,对比 OpenTelemetry 与 Prometheus 的相同与差异,后重点介绍如何将应用的 OpenTelemetry 指标接入 Prometheus 及背后原理,最后介绍阿里云可观测监控 Prometheus 版拥抱 OpenTelemetry 及相关落地实践案例,希望能更好的帮助读者更好的理解 OpenTelemetry 及与 Prometheus 的生态融合。
阿里千万实例可观测采集器-iLogtail正式开源
11月23日,阿里正式开源可观测数据采集器iLogtail。作为阿里内部可观测数据采集的基础设施,iLogtail承载了阿里巴巴集团、蚂蚁的日志、监控、Trace、事件等多种可观测数据的采集工作。iLogtail运行在服务器、容器、K8s、嵌入式等多种环境,支持采集数百种可观测数据,目前已经有千万级的安装量,每天采集数十PB的可观测数据,广泛应用于线上监控、问题分析/定位、运营分析、安全分析等多种场景。
图文解析带你精通时序PromQL语法
[阿里云SLS可观测团队发布] 本文通过图文解析深入讲解PromQL的计算原理,涵盖其与SQL的差异、时间线模型、选点机制、聚合函数、窗口函数及常见非预期场景,帮助用户掌握PromQL的核心语法与执行逻辑。
基于 OPLG 从 0 到 1 构建统一可观测平台实践
随着软件复杂度的不断提升,单体应用架构逐步向分布式和微服务的架构演进,整体的调用环境也越来越复杂,仅靠日志和指标渐渐难以快速定位复杂环境下的问题。对于全栈可观测的诉求也变得愈加强烈,Traces、Metrics 和 Logs 的连接也愈发紧密。
🎉 WatchAlert - 开源多数据源告警引擎【运维研发必备能力】
WatchAlert 是一个开源的多数据源告警引擎,支持从 Prometheus、Elasticsearch、Kubernetes 等多种数据源获取监控数据,并根据预定义的告警规则触发告警。它具备多数据源支持、灵活的告警规则、多渠道告警通知、可扩展架构和高性能等核心特性,帮助团队更高效地监控和响应问题。项目地址:https://github.com/opsre/WatchAlert
问题盘点|使用 Prometheus 监控 Kafka,我们该关注哪些指标
Kafka 作为当前广泛使用的中间件产品,承担了重要/核心业务数据流转,其稳定运行关乎整个业务系统可用性。本文旨在分享阿里云 Prometheus 在阿里云 Kafka 和自建 Kafka 的监控实践。
跟误告警说再见,Smart Metrics 帮你用算法配告警
本文从两类常见的无效告警规则入手,分析有效告警配置难,误告警泛滥的原因,介绍 Smart Metrics 是如何帮助用户解决告警难配的问题的,并介绍一些最佳实践。
客户案例 | 橡树黑卡携手观测云,实现会员体系业务可观测
橡树黑卡是国内领先的付费会员制权益服务平台,提供付费会员解决方案设计、产品研发、数字供应链管理、活动运营、客服咨询等一站式服务。
告别数据库“膨胀”:Dify x SLS 构建高可用生产级 AI 架构
告别数据库“膨胀”!借助SLS打造高可用生产级的Dify日志场景,通过将工作流日志从PostgreSQL迁移至SLS,实现存储压力降低95%+、成本下降近10倍,并支持实时分析、监控告警与数据闭环,彻底解决高并发下的连接池打满、慢查询频发等痛点,助力AI应用高效稳定运行!
别让运维跪着查日志了!给老板看的“业务观测”大盘才是真香
深夜告警、业务暴跌、全员背锅?一次支付故障暴露传统监控盲区。我们通过业务观测,将技术指标转化为老板听得懂的“人话”,实现从被动救火到主动洞察的跨越。让技术团队不再跪着查日志,而是站着驱动业务增长。
PTS压测问题之调试返回403如何解决
PTS(Performance Testing Service)是一项面向网站、应用等提供的压力测试服务,用于模拟不同场景下的用户访问,评估系统的性能表现;在进行PTS压测时,可能会出现一些异常或报错,本合集将PTS压测中频繁出现的问题及其解决办法进行汇编,旨在帮助用户更有效地进行性能测试和问题定位。
Dubbo 可观测性实践之 Metrics 功能解析
Dubbo3 的建设规划有上云,可观测性是上云必不可少的能力,集群间根据实例可用性负载均衡、Kubernetes 弹性伸缩、建立实例健康模型等等运用场景都需要可观测性。
如何实践FinOps入门指南
本文系统阐述了FinOps(云财务运营)的四阶段采用路径:研究、提出、准备与启动。通过数据收集、利益相关者沟通、战略提案和团队协作,助力组织实现云成本透明化、优化支出并推动业务价值。适用于希望落地FinOps的个人与团队,提供实用框架与执行指南。
助力企业高效构建安全、可观测的云上数据中心
本次课程聚焦于助力企业高效构建安全、可观测的云上数据中心,涵盖三大方面:1) 数据中心网络面临的挑战,包括VPC、NAT网关和私网连接等产品的功能与挑战;2) 数据中心网络产品重磅发布,涉及安全设计建议、容灾能力提升及深度可观测能力的增强;3) 用户体验升级,通过VPC IPAM实现高效的网络地址管理和简化的产品体验。整体旨在为企业提供更安全、稳定、高效的云上解决方案。
云原生NPM与传统NPM的差异
本文对比传统NPM与云原生NPM在部署、流量采集、资源影响等方面的差异,聚焦Packet处理,分析二者优劣。随着eBPF等新技术应用,云原生NPM正加速发展,助力高效网络监控与故障定位。
告别传统Log追踪!GOAT如何用HTTP接口重塑代码监控
本文介绍了GOAT(Golang Application Tracing)工具的使用方法,通过一个Echo问答服务实例,详细展示了代码埋点与追踪技术的应用。内容涵盖初始化配置、自动埋点、手动调整埋点、数据监控及清理埋点等核心功能。GOAT适用于灰度发布、功能验证、性能分析、Bug排查和代码重构等场景,助力Go项目质量保障与平稳发布。工具以轻量高效的特点,为开发团队提供数据支持,优化决策流程。
构建深度可观测、可集成的网络智能运维平台
本文介绍了构建深度可观测、可集成的网络智能运维平台(简称NIS),旨在解决云上网络运维面临的复杂挑战。内容涵盖云网络运维的三大难题、打造云原生AIOps工具集的解决思路、可观测性对业务稳定的重要性,以及产品发布的亮点,包括流量分析NPM、网络架构巡检和自动化运维OpenAPI,助力客户实现自助运维与优化。
FinOps for AI 概述
本文探讨生成式AI带来的新型成本挑战,如cost-per-token计费、GPU资源稀缺与波动定价。提出通过FinOps实践实现AI支出管控:建立成本基线、优化资源分配、实施配额与标记、加强跨团队协作,并将财务监控与业务成果对齐,推动AI成本管理从“爬”到“跑”的渐进式成熟。
FinOps云成本分配指南
成本分配是FinOps核心实践,通过层级结构、标签等元数据将云成本精准归因至部门、项目或所有者,实现成本展示与回收。需跨财务、工程、业务团队协作,建立强制标签策略并推动执行,提升财务透明度、问责制及优化能力。衡量指标包括标签合规率、成本分配时效等,成熟实施可显著增强组织云成本管控力。
【数据可观测】阿里云的Grafana云监控大盘服务
阿里云发布的grafana托管服务,更是为云上的资产提供了高效的监控数据可观测能力。阿里云grafana弹性、免运维,可以方便的对接云上云下的各种数据源。
日志采集效能跃迁:iLogtail 到 LoongCollector 的全面升级
LoongCollector 在日志场景中实现了全面的重磅升级,从功能、性能、稳定性等各个方面均进行了深度优化和提升,本文我们将对 LoongCollector 的升级进行详细介绍。
从 DeepSeek 敏感信息泄露谈可观测系统的数据安全预防
探讨了 SLS 中增强数据安全的几种方式:权限精细化管控有效减少了潜在安全风险;接入层脱敏技术阻止敏感数据落库,提升了隐私保护;StoreView 字段集控制通过限制查询数据范围,降低数据泄露损害。智能监控系统提供实时监测,快速识别并阻断异常拖库行为,为企业提供了迅速响应和抵御威胁的能力。
AI + 可观测最佳实践:让业务从“看见”到“洞察”
本文介绍了AI Ops的概念及其在提升系统运维效率、洞察力和可观测性方面的作用。主要内容分为三个部分:一是监控、观测与洞察的区别及挑战,强调了数据整合和语义对齐的重要性;二是AI与计算如何重塑可观测性,通过UModel数字图谱和多模态存储分析架构实现数据联通;三是最佳实践与未来展望,展示了阿里云AI Stack可观测解决方案的应用案例,并总结了可观测性的四个发展阶段,最终愿景是借助AI力量让每个人成为多领域的专家。
从巴比馒头的“洗菜流水线”,来看“telemetry pipeline”工具的火热兴起
以巴比馒头自动化洗菜为喻,探讨运维领域“数据清洗”难题。DataHub作为国产可视化遥测管道工具,支持多源数据接入与低代码编排,实现日志、指标、链路等数据的高效处理与统一管理,助力企业构建高质量可观测体系。(238字)
高效定位 Go 应用问题:Go 可观测性功能深度解析
为进一步赋能用户在复杂场景下快速定位与解决问题,我们结合近期发布的一系列全新功能,精心梳理了一套从接入到问题发现、再到问题排查与精准定位的最佳实践指南。
客户案例 | 橡树黑卡携手观测云,实现会员体系业务可观测
橡树黑卡(www.oakvip.cn)是国内领先的付费会员制权益服务平台,提供付费会员解决方案设计、产品研发、数字供应链管理、活动运营、客服咨询等一站式服务。
统一观测|如何使用 Prometheus 监控 Windows
阿里云 Prometheus 与阿里云容器服务和 ECS 无缝集成,默认提供了 Windows 的 CPU、内存、磁盘、网络和进程等 5 方面的核心监控指标采集,同时提供了对应的优化后的专家级监控大盘和告警指标模板,为用户提供了免运维、开箱即用的 Windows 监控能力。