【笔记】最佳实践—如何优化数据全量抽取

简介: 本文介绍了在应用内通过代码高效抽取数据的方法。

简介

数据抽取是指通过代码或者数据导出工具,从PolarDB-X中批量读取数据的操作。主要包括以下场景:

  • 通过数据导出工具将数据全量抽取到下游系统。PolarDB-X支持多种数据导出工具,更多内容请参考数据导入导出
  • 在应用内处理数据或者批量的将查询结果返回给用户浏览时,不能依赖外部工具,必须在应用内通过代码完成数据全量抽取。

本文主要介绍在应用内通过代码高效抽取数据的方法,根据是否一次性读取全量数据,分为全量抽取和分页查询。

全量抽取场景

全量抽取使用的SQL通常不包含表的拆分键,以全表扫描的方式执行,随着读取数据量的增加,数据抽取操作的执行时间线性增长。为了避免占用过多网络/连接资源,可以使用HINT直接下发查询语句,从物理分片中拉取数据。以下示例采用JAVA代码编写,完整使用方法参考 NODE HINT


public static void extractData(Connection connection, String logicalTableName, Consumer<ResultSet> consumer)
    throws SQLException {
    final String topology = "show topology from {0}";
    final String query = "/*+TDDL:NODE({0})*/select * from {1}";
    try (final Statement statement = connection.createStatement()) {
        final Map<String, List<String>> partitionTableMap = new LinkedHashMap<>();
        // Get partition id and physical table name of given logical table
        try (final ResultSet rs = statement.executeQuery(MessageFormat.format(topology, logicalTableName))) {
            while (rs.next()) {
                partitionTableMap.computeIfAbsent(rs.getString(2), (k) -> new ArrayList<>()).add(rs.getString(3));
            }
        }
        // Serially extract data from each partition
        for (Map.Entry<String, List<String>> entry : partitionTableMap.entrySet()) {
            for (String tableName : entry.getValue()) {
                try (final ResultSet rs = statement
                    .executeQuery(MessageFormat.format(query, entry.getKey(), tableName))) {
                    // Consume data
                    consumer.accept(rs);
                }
            }
        }
    }
}

分页查询场景

向用户展示列表信息时,需要分页来提高页面的加载效率,避免返回过多冗余信息,用于处理分页显示需求的查询,称为分页查询。关系型数据库没有直接提供分段返回表中数据的能力,高效的实现分页查询,还需要结合数据库本身的特点来设计查询语句。

以MySQL为例,分页查询最直观的实现方法,是使用limit offset,pageSize来实现,例如如下查询:


select * from t_order where user_id = xxx order by gmt_create, id limit offset, pageSize

因为gmt_create可能重复,所以order by时应加上id,保证结果顺序的确定性。


说明 该方案在表规模较小的时候,能够正常运行。当t_order表增长到十万级,随着页数增加,执行速度明显变慢,可能降到几十毫秒的量级,如果数据量增长到百万级,则耗时达到秒级,数据量继续增长,耗时最终会变得不可接受。

问题分析

假设我们在user_id, gmt_create上创建了局部索引,由于只有user_id上的条件,每次需要扫描的总数据量为offset + pageSize ,随着offset的增大逐渐接近全表扫描,导致耗时增加。并且在分布式数据库中,全表排序的吞吐无法通过增加DN数量来提高。

改进方案1

每次获取下一页记录时,指定从上次结束的位置继续往后取,这样不需要设置offset ,能够避免出现全表扫描的情况。看一个按id进行分页查询的例子:


select * from t_order where id > lastMaxId order by id limit pageSize

第一次查询不指定条件,后续查询则传入前一次查询的最大id,在执行时,数据库首先在索引上定位到lastMaxId的位置,然后连续返回pageSize条记录即可,非常高效。


说明 当id为主键或者唯一键时,改进方案1可以达到分页查询的效果,也有不错的性能。但缺点也比较明显,当id上有重复值时,可能会漏掉部分记录。

改进方案2

MySQL支持通过 Row Constructor Expression实现多列比较的语义(PolarDB-X同样支持)。


(c2,c3) > (1,1)

等价于
c2 > 1 OR ((c2 = 1) AND (c3 > 1))

因此,可以用下面的方法实现分页查询语义:


select * from t_order 
where user_id = xxx and (gmt_create, id) > (lastMaxGmtCreate, lastMaxId)
order by user_id, gmt_create, id limit pageSize

第一次查询不指定条件,后续查询则传入前一次查询的最大gmt_create和id,通过Row Constructor Expression正确处理gmt_create存在重复的情况。


说明 示例中,为了提高查询性能,我们在user_id和gmt_create上建立联合索引,并在order by中加入user_id提示优化器可以通过索引来消除排序。由于Row Constructor Expression包含null值会导致表达式求值结果为null,当存在null值时需要使用OR表达式。PolarDB-X目前只在Row Constructor Expression仅包含拆分键时才将其用于分区裁剪,其他场景同样需要使用OR表达式。

结合上述分析,给出一个PolarDB-X上分页查询的最佳实践:


-- lastMaxGmtCreate is not null 
select * from t_order
where user_id = xxx
and (
(gmt_create > lastMaxGmtCreate)
or ((gmt_create = lastMaxGmtCreate) and (id > lastMaxId))
)
order by user_id, gmt_create, id limit pageSize
-- lastMaxGmtCreate is null
select * from t_order
where user_id = xxx
and (
(gmt_create is not null)
or (gmt_create is null and id > lastMaxId)
)
order by user_id, gmt_create, id limit pageSize
相关文章
|
SQL 数据库 数据库管理
PowerDesigner16:导入SQL脚本、显示中文注释
PowerDesigner16:导入SQL脚本、显示中文注释
PowerDesigner16:导入SQL脚本、显示中文注释
|
8月前
|
前端开发 Java API
Spring MVC 数据绑定机制详解:@ModelAttribute vs. @RequestParam 和 @PathVariable
本文深入解析了Spring MVC的数据绑定机制,重点对比了`@RequestParam`、`@PathVariable`和`@ModelAttribute`三种注解的使用场景与功能。`@RequestParam`适用于从查询参数或表单数据中提取简单值;`@PathVariable`用于从URL路径中获取资源标识符;而`@ModelAttribute`则能将多个请求参数自动绑定到Java对象,支持复杂数据结构的处理。通过实际案例分析,帮助开发者根据需求选择合适的注解,提升API设计与表单处理效率。
657 9
|
消息中间件 存储 算法
深入了解Kafka的数据持久化机制
深入了解Kafka的数据持久化机制
1186 0
ly~
|
消息中间件 存储 监控
如何查看 RocketMQ 消息的重试次数和时间间隔?
RocketMQ消息重试次数和时间间隔可通过查看消费者和Broker日志、使用管理控制台的监控页面和消息查询功能,或通过分析消费者代码和RocketMQ客户端库代码等方式获取。日志中常有消费失败重试的明确记录,控制台可监控消费情况推断重试状态,代码分析则适合技术用户深入了解。
ly~
1121 3
|
JSON NoSQL Java
redis的java客户端的使用(Jedis、SpringDataRedis、SpringBoot整合redis、redisTemplate序列化及stringRedisTemplate序列化)
这篇文章介绍了在Java中使用Redis客户端的几种方法,包括Jedis、SpringDataRedis和SpringBoot整合Redis的操作。文章详细解释了Jedis的基本使用步骤,Jedis连接池的创建和使用,以及在SpringBoot项目中如何配置和使用RedisTemplate和StringRedisTemplate。此外,还探讨了RedisTemplate序列化的两种实践方案,包括默认的JDK序列化和自定义的JSON序列化,以及StringRedisTemplate的使用,它要求键和值都必须是String类型。
redis的java客户端的使用(Jedis、SpringDataRedis、SpringBoot整合redis、redisTemplate序列化及stringRedisTemplate序列化)
|
算法
详尽分享算法系列:日历算法
详尽分享算法系列:日历算法
567 0
|
XML 安全 IDE
springboot @RequiredArgsConstructor的概念与使用
【4月更文挑战第25天】在Spring Boot中,@RequiredArgsConstructor注解是Lombok库提供的功能,用于自动生成包含必需参数的构造函数。"必需参数"指的是那些被声明为final或者有@NonNull注解的成员变量。这种注解极大地简化了Java类的编写,尤其是在需要注入依赖或常量值时
704 3
|
Java
java中StringTokenizer使用
java中StringTokenizer使用
92 1
|
JSON 安全 API
⚡什么是 OpenAPI,优势、劣势及示例
OpenAPI 是一个用于描述RESTful API的标准,它提供了一个接口,使得人和机器无需源代码或文档就能理解服务。它定义了API的结构,与语言无关,适用于REST API。OpenAPI始于Swagger项目,后来成为OpenAPI倡议的一部分,由Linux基金会管理,得到了众多公司的支持。OpenAPI流行的原因包括其语言无关性、可读性、社区支持和工具生态系统。它使用JSON格式,支持各种数据类型,并具有严格定义的结构。虽然有其他如RAML和API Blueprint的竞争格式,但OpenAPI的广泛采用使其成为行业标准。
|
设计模式 缓存 监控
详细介绍Hystrix的概念、作用、使用方法
Hystrix 通过这些核心类和接口实现了断路器模式,提供了线程池隔离、请求缓存、服务降级等功能。每个命令在执行时都会被封装为一个 HystrixCommand 实例,并在一个独立的线程池中执行。
1288 1