目录
1、from pycocotools.coco import COCO
pycocotools库的简介
pycocotools是什么?即python api tools of COCO。COCO是一个大型的图像数据集,用于目标检测、分割、人的关键点检测、素材分割和标题生成。这个包提供了Matlab、Python和luaapi,这些api有助于在COCO中加载、解析和可视化注释。请访问COCO - Common Objects in Context,可以了解关于COCO的更多信息,包括数据、论文和教程。COCO网站上也描述了注释的确切格式。Matlab和PythonAPI是完整的,LuaAPI只提供基本功能。
除了这个API,请下载COCO图片和注释,以便运行演示和使用API。两者都可以在项目网站上找到。
- -请下载、解压缩并将图像放入:coco/images/
- -请下载并将注释放在:coco/annotations中/
COCO API: http://cocodataset.org/
pycocotools库的安装
pip install pycocotools==2.0.0
pycocotools库的使用方法
1、from pycocotools.coco import COCO
1. __author__ = 'tylin' 2. __version__ = '2.0' 3. # Interface for accessing the Microsoft COCO dataset. 4. 5. # Microsoft COCO is a large image dataset designed for object detection, 6. # segmentation, and caption generation. pycocotools is a Python API that 7. # assists in loading, parsing and visualizing the annotations in COCO. 8. # Please visit http://mscoco.org/ for more information on COCO, including 9. # for the data, paper, and tutorials. The exact format of the annotations 10. # is also described on the COCO website. For example usage of the pycocotools 11. # please see pycocotools_demo.ipynb. In addition to this API, please download both 12. # the COCO images and annotations in order to run the demo. 13. 14. # An alternative to using the API is to load the annotations directly 15. # into Python dictionary 16. # Using the API provides additional utility functions. Note that this API 17. # supports both *instance* and *caption* annotations. In the case of 18. # captions not all functions are defined (e.g. categories are undefined). 19. 20. # The following API functions are defined: 21. # COCO - COCO api class that loads COCO annotation file and prepare data structures. 22. # decodeMask - Decode binary mask M encoded via run-length encoding. 23. # encodeMask - Encode binary mask M using run-length encoding. 24. # getAnnIds - Get ann ids that satisfy given filter conditions. 25. # getCatIds - Get cat ids that satisfy given filter conditions. 26. # getImgIds - Get img ids that satisfy given filter conditions. 27. # loadAnns - Load anns with the specified ids. 28. # loadCats - Load cats with the specified ids. 29. # loadImgs - Load imgs with the specified ids. 30. # annToMask - Convert segmentation in an annotation to binary mask. 31. # showAnns - Display the specified annotations. 32. # loadRes - Load algorithm results and create API for accessing them. 33. # download - Download COCO images from mscoco.org server. 34. # Throughout the API "ann"=annotation, "cat"=category, and "img"=image. 35. # Help on each functions can be accessed by: "help COCO>function". 36. 37. # See also COCO>decodeMask, 38. # COCO>encodeMask, COCO>getAnnIds, COCO>getCatIds, 39. # COCO>getImgIds, COCO>loadAnns, COCO>loadCats, 40. # COCO>loadImgs, COCO>annToMask, COCO>showAnns 41. 42. # Microsoft COCO Toolbox. version 2.0 43. # Data, paper, and tutorials available at: http://mscoco.org/ 44. # Code written by Piotr Dollar and Tsung-Yi Lin, 2014. 45. # Licensed under the Simplified BSD License [see bsd.txt]
2、输出COCO数据集信息并进行图片可视化
1. from pycocotools.coco import COCO 2. import matplotlib.pyplot as plt 3. import cv2 4. import os 5. import numpy as np 6. import random 7. 8. 9. #1、定义数据集路径 10. cocoRoot = "F:/File_Python/Resources/image/COCO" 11. dataType = "val2017" 12. annFile = os.path.join(cocoRoot, f'annotations/instances_{dataType}.json') 13. print(f'Annotation file: {annFile}') 14. 15. #2、为实例注释初始化COCO的API 16. coco=COCO(annFile) 17. 18. 19. #3、采用不同函数获取对应数据或类别 20. ids = coco.getCatIds('person')[0] #采用getCatIds函数获取"person"类别对应的ID 21. print(f'"person" 对应的序号: {ids}') 22. id = coco.getCatIds(['dog'])[0] #获取某一类的所有图片,比如获取包含dog的所有图片 23. imgIds = coco.catToImgs[id] 24. print(f'包含dog的图片共有:{len(imgIds)}张, 分别是:',imgIds) 25. 26. 27. cats = coco.loadCats(1) #采用loadCats函数获取序号对应的类别名称 28. print(f'"1" 对应的类别名称: {cats}') 29. 30. imgIds = coco.getImgIds(catIds=[1]) #采用getImgIds函数获取满足特定条件的图片(交集),获取包含person的所有图片 31. print(f'包含person的图片共有:{len(imgIds)}张') 32. 33. 34. 35. #4、将图片进行可视化 36. imgId = imgIds[10] 37. imgInfo = coco.loadImgs(imgId)[0] 38. print(f'图像{imgId}的信息如下:\n{imgInfo}') 39. 40. imPath = os.path.join(cocoRoot, 'images', dataType, imgInfo['file_name']) 41. im = cv2.imread(imPath) 42. plt.axis('off') 43. plt.imshow(im) 44. plt.show() 45. 46. 47. plt.imshow(im); plt.axis('off') 48. annIds = coco.getAnnIds(imgIds=imgInfo['id']) # 获取该图像对应的anns的Id 49. print(f'图像{imgInfo["id"]}包含{len(anns)}个ann对象,分别是:\n{annIds}') 50. anns = coco.loadAnns(annIds) 51. 52. coco.showAnns(anns) 53. print(f'ann{annIds[3]}对应的mask如下:') 54. mask = coco.annToMask(anns[3]) 55. plt.imshow(mask); plt.axis('off')