推荐文章
ML之FE:基于load_mock_customer数据集(模拟客户)利用featuretools工具实现自动特征生成/特征衍生
ML之FE:基于load_mock_customer数据集(模拟客户)利用featuretools工具实现自动特征生成/特征衍生实现
ML之FE:基于load_mock_customer数据集(模拟客户,单个DataFrame)利用featuretools工具实现自动特征生成/特征衍生
ML之FE:基于load_mock_customer数据集(模拟客户,单个DataFrame)利用featuretools工具实现自动特征生成/特征衍生实现
基于load_mock_customer数据集(模拟客户,单个DataFrame)利用featuretools工具实现自动特征生成/特征衍生
输出结果
1. type: <class 'pandas.core.frame.DataFrame'> 2. customer_id zip_code join_date date_of_birth 3. 0 1 60091 2011-04-17 10:48:33 1994-07-18 4. 1 2 13244 2012-04-15 23:31:04 1986-08-18 5. 2 3 13244 2011-08-13 15:42:34 2003-11-21 6. 3 4 60091 2011-04-08 20:08:14 2006-08-15 7. 4 5 60091 2010-07-17 05:27:50 1984-07-28 8. feature_matrix_customers 9. zip_code DAY(date_of_birth) DAY(join_date) \ 10. customer_id 11. 1 60091 18 17 12. 2 13244 18 15 13. 3 13244 21 13 14. 15. MONTH(date_of_birth) MONTH(join_date) WEEKDAY(date_of_birth) \ 16. customer_id 17. 1 7 4 0 18. 2 8 4 0 19. 3 11 8 4 20. 21. WEEKDAY(join_date) YEAR(date_of_birth) YEAR(join_date) 22. customer_id 23. 1 6 1994 2011 24. 2 6 1986 2012 25. 3 5 2003 2011 26. features_defs_customers: 9 [<Feature: zip_code>, <Feature: DAY(date_of_birth)>, <Feature: DAY(join_date)>, <Feature: MONTH(date_of_birth)>, <Feature: MONTH(join_date)>, <Feature: WEEKDAY(date_of_birth)>, <Feature: WEEKDAY(join_date)>, <Feature: YEAR(date_of_birth)>, <Feature: YEAR(join_date)>] 27. <Feature: MONTH(date_of_birth)> 28. The month of the "date_of_birth".
设计思路