ML之XGBoost:利用XGBoost算法对波士顿数据集回归预测(模型调参【2种方法,ShuffleSplit+GridSearchCV、TimeSeriesSplitGSCV】、模型评估)

简介: ML之XGBoost:利用XGBoost算法对波士顿数据集回归预测(模型调参【2种方法,ShuffleSplit+GridSearchCV、TimeSeriesSplitGSCV】、模型评估)


目录

利用XGBoost算法对波士顿数据集回归预测

T1、ShuffleSplit+GSCV模型调参

T2、TimeSeriesSplit=GSCV模型调参


 

 

相关文章

ML之XGBoost:利用XGBoost算法对波士顿数据集回归预测(模型调参【2种方法,ShuffleSplit+GridSearchCV、TimeSeriesSplitGSCV】、模型评估)

ML之XGBoost:利用XGBoost算法对波士顿数据集回归预测(模型调参【2种方法,ShuffleSplit+GridSearchCV、TimeSeriesSplitGSCV】、模型评估)实现

利用XGBoost算法对波士顿数据集回归预测

T1、ShuffleSplit+GSCV模型调参

输出XGBR_GSCV模型最佳得分、最优参数:0.8630,{'learning_rate': 0.12, 'max_depth': 3, 'n_estimators': 200}

XGBR_Shuffle_GSCV time: 256.7015066994206

XGBoost Score value: 0.8536645272887292

XGBoost R2    value: 0.8536645272887292

XGBoost MAE   value: 2.1987844654894246

XGBoost RMSE  value: 3.368537070469827

1. 0.588111 (0.039989) with: {'learning_rate': 0.03, 'max_depth': 1, 'n_estimators': 50}
2. 0.745248 (0.039715) with: {'learning_rate': 0.03, 'max_depth': 1, 'n_estimators': 100}
3. 0.780673 (0.041418) with: {'learning_rate': 0.03, 'max_depth': 1, 'n_estimators': 150}
4. 0.794564 (0.045098) with: {'learning_rate': 0.03, 'max_depth': 1, 'n_estimators': 200}
5. 0.739650 (0.048542) with: {'learning_rate': 0.03, 'max_depth': 3, 'n_estimators': 50}
6. 0.827152 (0.051752) with: {'learning_rate': 0.03, 'max_depth': 3, 'n_estimators': 100}
7. 0.843543 (0.056119) with: {'learning_rate': 0.03, 'max_depth': 3, 'n_estimators': 150}
8. 0.849557 (0.055848) with: {'learning_rate': 0.03, 'max_depth': 3, 'n_estimators': 200}
9. 0.740037 (0.040934) with: {'learning_rate': 0.03, 'max_depth': 5, 'n_estimators': 50}
10. 0.826966 (0.045216) with: {'learning_rate': 0.03, 'max_depth': 5, 'n_estimators': 100}
11. 0.841845 (0.047665) with: {'learning_rate': 0.03, 'max_depth': 5, 'n_estimators': 150}
12. 0.845978 (0.047794) with: {'learning_rate': 0.03, 'max_depth': 5, 'n_estimators': 200}
13. 0.720503 (0.038676) with: {'learning_rate': 0.03, 'max_depth': 7, 'n_estimators': 50}
14. 0.798275 (0.047791) with: {'learning_rate': 0.03, 'max_depth': 7, 'n_estimators': 100}
15. 0.808659 (0.048699) with: {'learning_rate': 0.03, 'max_depth': 7, 'n_estimators': 150}
16. 0.812894 (0.047902) with: {'learning_rate': 0.03, 'max_depth': 7, 'n_estimators': 200}
17. 0.716254 (0.039716) with: {'learning_rate': 0.03, 'max_depth': 9, 'n_estimators': 50}
18. 0.795603 (0.049370) with: {'learning_rate': 0.03, 'max_depth': 9, 'n_estimators': 100}
19. 0.804215 (0.054399) with: {'learning_rate': 0.03, 'max_depth': 9, 'n_estimators': 150}
20. 0.806022 (0.054965) with: {'learning_rate': 0.03, 'max_depth': 9, 'n_estimators': 200}
21. 0.714920 (0.040201) with: {'learning_rate': 0.03, 'max_depth': 11, 'n_estimators': 50}
22. 0.796940 (0.043692) with: {'learning_rate': 0.03, 'max_depth': 11, 'n_estimators': 100}
23. 0.803563 (0.047487) with: {'learning_rate': 0.03, 'max_depth': 11, 'n_estimators': 150}
24. 0.805639 (0.049146) with: {'learning_rate': 0.03, 'max_depth': 11, 'n_estimators': 200}
25. 0.717114 (0.040552) with: {'learning_rate': 0.03, 'max_depth': 13, 'n_estimators': 50}
26. 0.798669 (0.044140) with: {'learning_rate': 0.03, 'max_depth': 13, 'n_estimators': 100}
27. 0.807001 (0.047485) with: {'learning_rate': 0.03, 'max_depth': 13, 'n_estimators': 150}
28. 0.808231 (0.048622) with: {'learning_rate': 0.03, 'max_depth': 13, 'n_estimators': 200}
29. 0.716787 (0.040747) with: {'learning_rate': 0.03, 'max_depth': 15, 'n_estimators': 50}
30. 0.800528 (0.042525) with: {'learning_rate': 0.03, 'max_depth': 15, 'n_estimators': 100}
31. 0.810075 (0.045364) with: {'learning_rate': 0.03, 'max_depth': 15, 'n_estimators': 150}
32. 0.810928 (0.047001) with: {'learning_rate': 0.03, 'max_depth': 15, 'n_estimators': 200}
33. 0.748057 (0.039107) with: {'learning_rate': 0.06, 'max_depth': 1, 'n_estimators': 50}
34. 0.796450 (0.044658) with: {'learning_rate': 0.06, 'max_depth': 1, 'n_estimators': 100}
35. 0.810749 (0.049107) with: {'learning_rate': 0.06, 'max_depth': 1, 'n_estimators': 150}
36. 0.818271 (0.049566) with: {'learning_rate': 0.06, 'max_depth': 1, 'n_estimators': 200}
37. 0.825470 (0.054236) with: {'learning_rate': 0.06, 'max_depth': 3, 'n_estimators': 50}
38. 0.847820 (0.057729) with: {'learning_rate': 0.06, 'max_depth': 3, 'n_estimators': 100}
39. 0.852501 (0.057970) with: {'learning_rate': 0.06, 'max_depth': 3, 'n_estimators': 150}
40. 0.855974 (0.057133) with: {'learning_rate': 0.06, 'max_depth': 3, 'n_estimators': 200}
41. 0.830130 (0.042166) with: {'learning_rate': 0.06, 'max_depth': 5, 'n_estimators': 50}
42. 0.848818 (0.043202) with: {'learning_rate': 0.06, 'max_depth': 5, 'n_estimators': 100}
43. 0.850634 (0.043955) with: {'learning_rate': 0.06, 'max_depth': 5, 'n_estimators': 150}
44. 0.850776 (0.044242) with: {'learning_rate': 0.06, 'max_depth': 5, 'n_estimators': 200}
45. 0.797091 (0.049104) with: {'learning_rate': 0.06, 'max_depth': 7, 'n_estimators': 50}
46. 0.811453 (0.050410) with: {'learning_rate': 0.06, 'max_depth': 7, 'n_estimators': 100}
47. 0.812925 (0.050391) with: {'learning_rate': 0.06, 'max_depth': 7, 'n_estimators': 150}
48. 0.813141 (0.050317) with: {'learning_rate': 0.06, 'max_depth': 7, 'n_estimators': 200}
49. 0.798523 (0.048830) with: {'learning_rate': 0.06, 'max_depth': 9, 'n_estimators': 50}
50. 0.807724 (0.053522) with: {'learning_rate': 0.06, 'max_depth': 9, 'n_estimators': 100}
51. 0.808858 (0.053694) with: {'learning_rate': 0.06, 'max_depth': 9, 'n_estimators': 150}
52. 0.809064 (0.053787) with: {'learning_rate': 0.06, 'max_depth': 9, 'n_estimators': 200}
53. 0.795488 (0.045973) with: {'learning_rate': 0.06, 'max_depth': 11, 'n_estimators': 50}
54. 0.803783 (0.051639) with: {'learning_rate': 0.06, 'max_depth': 11, 'n_estimators': 100}
55. 0.805366 (0.052070) with: {'learning_rate': 0.06, 'max_depth': 11, 'n_estimators': 150}
56. 0.805499 (0.052113) with: {'learning_rate': 0.06, 'max_depth': 11, 'n_estimators': 200}
57. 0.796173 (0.046698) with: {'learning_rate': 0.06, 'max_depth': 13, 'n_estimators': 50}
58. 0.806388 (0.050425) with: {'learning_rate': 0.06, 'max_depth': 13, 'n_estimators': 100}
59. 0.807511 (0.050917) with: {'learning_rate': 0.06, 'max_depth': 13, 'n_estimators': 150}
60. 0.807696 (0.050925) with: {'learning_rate': 0.06, 'max_depth': 13, 'n_estimators': 200}
61. 0.795853 (0.045518) with: {'learning_rate': 0.06, 'max_depth': 15, 'n_estimators': 50}
62. 0.805835 (0.048817) with: {'learning_rate': 0.06, 'max_depth': 15, 'n_estimators': 100}
63. 0.806752 (0.049863) with: {'learning_rate': 0.06, 'max_depth': 15, 'n_estimators': 150}
64. 0.806967 (0.049886) with: {'learning_rate': 0.06, 'max_depth': 15, 'n_estimators': 200}
65. 0.782405 (0.041673) with: {'learning_rate': 0.09, 'max_depth': 1, 'n_estimators': 50}
66. 0.810724 (0.050393) with: {'learning_rate': 0.09, 'max_depth': 1, 'n_estimators': 100}
67. 0.820115 (0.051026) with: {'learning_rate': 0.09, 'max_depth': 1, 'n_estimators': 150}
68. 0.825857 (0.051649) with: {'learning_rate': 0.09, 'max_depth': 1, 'n_estimators': 200}
69. 0.843458 (0.056602) with: {'learning_rate': 0.09, 'max_depth': 3, 'n_estimators': 50}
70. 0.855060 (0.056710) with: {'learning_rate': 0.09, 'max_depth': 3, 'n_estimators': 100}
71. 0.858793 (0.055724) with: {'learning_rate': 0.09, 'max_depth': 3, 'n_estimators': 150}
72. 0.860149 (0.055734) with: {'learning_rate': 0.09, 'max_depth': 3, 'n_estimators': 200}
73. 0.842437 (0.046911) with: {'learning_rate': 0.09, 'max_depth': 5, 'n_estimators': 50}
74. 0.849599 (0.045852) with: {'learning_rate': 0.09, 'max_depth': 5, 'n_estimators': 100}
75. 0.850152 (0.046078) with: {'learning_rate': 0.09, 'max_depth': 5, 'n_estimators': 150}
76. 0.849891 (0.046197) with: {'learning_rate': 0.09, 'max_depth': 5, 'n_estimators': 200}
77. 0.807907 (0.051134) with: {'learning_rate': 0.09, 'max_depth': 7, 'n_estimators': 50}
78. 0.810696 (0.051038) with: {'learning_rate': 0.09, 'max_depth': 7, 'n_estimators': 100}
79. 0.810941 (0.050779) with: {'learning_rate': 0.09, 'max_depth': 7, 'n_estimators': 150}
80. 0.810979 (0.050839) with: {'learning_rate': 0.09, 'max_depth': 7, 'n_estimators': 200}
81. 0.804573 (0.052898) with: {'learning_rate': 0.09, 'max_depth': 9, 'n_estimators': 50}
82. 0.809204 (0.053292) with: {'learning_rate': 0.09, 'max_depth': 9, 'n_estimators': 100}
83. 0.809325 (0.053303) with: {'learning_rate': 0.09, 'max_depth': 9, 'n_estimators': 150}
84. 0.809351 (0.053284) with: {'learning_rate': 0.09, 'max_depth': 9, 'n_estimators': 200}
85. 0.804379 (0.051647) with: {'learning_rate': 0.09, 'max_depth': 11, 'n_estimators': 50}
86. 0.807157 (0.053047) with: {'learning_rate': 0.09, 'max_depth': 11, 'n_estimators': 100}
87. 0.807332 (0.053061) with: {'learning_rate': 0.09, 'max_depth': 11, 'n_estimators': 150}
88. 0.807335 (0.053062) with: {'learning_rate': 0.09, 'max_depth': 11, 'n_estimators': 200}
89. 0.809283 (0.050355) with: {'learning_rate': 0.09, 'max_depth': 13, 'n_estimators': 50}
90. 0.812004 (0.052245) with: {'learning_rate': 0.09, 'max_depth': 13, 'n_estimators': 100}
91. 0.812156 (0.052289) with: {'learning_rate': 0.09, 'max_depth': 13, 'n_estimators': 150}
92. 0.812158 (0.052290) with: {'learning_rate': 0.09, 'max_depth': 13, 'n_estimators': 200}
93. 0.808697 (0.047241) with: {'learning_rate': 0.09, 'max_depth': 15, 'n_estimators': 50}
94. 0.811460 (0.049551) with: {'learning_rate': 0.09, 'max_depth': 15, 'n_estimators': 100}
95. 0.811645 (0.049603) with: {'learning_rate': 0.09, 'max_depth': 15, 'n_estimators': 150}
96. 0.811647 (0.049603) with: {'learning_rate': 0.09, 'max_depth': 15, 'n_estimators': 200}
97. 0.797008 (0.044026) with: {'learning_rate': 0.12, 'max_depth': 1, 'n_estimators': 50}
98. 0.819497 (0.048774) with: {'learning_rate': 0.12, 'max_depth': 1, 'n_estimators': 100}
99. 0.828557 (0.049254) with: {'learning_rate': 0.12, 'max_depth': 1, 'n_estimators': 150}
100. 0.831446 (0.048579) with: {'learning_rate': 0.12, 'max_depth': 1, 'n_estimators': 200}
101. 0.850108 (0.054443) with: {'learning_rate': 0.12, 'max_depth': 3, 'n_estimators': 50}
102. 0.860703 (0.051990) with: {'learning_rate': 0.12, 'max_depth': 3, 'n_estimators': 100}
103. 0.862097 (0.050875) with: {'learning_rate': 0.12, 'max_depth': 3, 'n_estimators': 150}
104. 0.862991 (0.050771) with: {'learning_rate': 0.12, 'max_depth': 3, 'n_estimators': 200}
105. 0.845629 (0.050619) with: {'learning_rate': 0.12, 'max_depth': 5, 'n_estimators': 50}
106. 0.846694 (0.051708) with: {'learning_rate': 0.12, 'max_depth': 5, 'n_estimators': 100}
107. 0.846881 (0.051518) with: {'learning_rate': 0.12, 'max_depth': 5, 'n_estimators': 150}
108. 0.847447 (0.051179) with: {'learning_rate': 0.12, 'max_depth': 5, 'n_estimators': 200}
109. 0.818390 (0.048416) with: {'learning_rate': 0.12, 'max_depth': 7, 'n_estimators': 50}
110. 0.820131 (0.048414) with: {'learning_rate': 0.12, 'max_depth': 7, 'n_estimators': 100}
111. 0.820054 (0.048396) with: {'learning_rate': 0.12, 'max_depth': 7, 'n_estimators': 150}
112. 0.820016 (0.048421) with: {'learning_rate': 0.12, 'max_depth': 7, 'n_estimators': 200}
113. 0.804340 (0.057268) with: {'learning_rate': 0.12, 'max_depth': 9, 'n_estimators': 50}
114. 0.806046 (0.057127) with: {'learning_rate': 0.12, 'max_depth': 9, 'n_estimators': 100}
115. 0.806095 (0.057104) with: {'learning_rate': 0.12, 'max_depth': 9, 'n_estimators': 150}
116. 0.806095 (0.057104) with: {'learning_rate': 0.12, 'max_depth': 9, 'n_estimators': 200}
117. 0.810022 (0.052949) with: {'learning_rate': 0.12, 'max_depth': 11, 'n_estimators': 50}
118. 0.810958 (0.053529) with: {'learning_rate': 0.12, 'max_depth': 11, 'n_estimators': 100}
119. 0.810963 (0.053537) with: {'learning_rate': 0.12, 'max_depth': 11, 'n_estimators': 150}
120. 0.810963 (0.053537) with: {'learning_rate': 0.12, 'max_depth': 11, 'n_estimators': 200}
121. 0.807990 (0.050201) with: {'learning_rate': 0.12, 'max_depth': 13, 'n_estimators': 50}
122. 0.809496 (0.050527) with: {'learning_rate': 0.12, 'max_depth': 13, 'n_estimators': 100}
123. 0.809512 (0.050529) with: {'learning_rate': 0.12, 'max_depth': 13, 'n_estimators': 150}
124. 0.809512 (0.050529) with: {'learning_rate': 0.12, 'max_depth': 13, 'n_estimators': 200}
125. 0.810050 (0.051373) with: {'learning_rate': 0.12, 'max_depth': 15, 'n_estimators': 50}
126. 0.811131 (0.052055) with: {'learning_rate': 0.12, 'max_depth': 15, 'n_estimators': 100}
127. 0.811146 (0.052061) with: {'learning_rate': 0.12, 'max_depth': 15, 'n_estimators': 150}
128. 0.811146 (0.052061) with: {'learning_rate': 0.12, 'max_depth': 15, 'n_estimators': 200}
129. 0.807162 (0.048547) with: {'learning_rate': 0.15, 'max_depth': 1, 'n_estimators': 50}
130. 0.824273 (0.050445) with: {'learning_rate': 0.15, 'max_depth': 1, 'n_estimators': 100}
131. 0.830500 (0.050552) with: {'learning_rate': 0.15, 'max_depth': 1, 'n_estimators': 150}
132. 0.830391 (0.051783) with: {'learning_rate': 0.15, 'max_depth': 1, 'n_estimators': 200}
133. 0.852195 (0.056525) with: {'learning_rate': 0.15, 'max_depth': 3, 'n_estimators': 50}
134. 0.858841 (0.055583) with: {'learning_rate': 0.15, 'max_depth': 3, 'n_estimators': 100}
135. 0.860678 (0.055755) with: {'learning_rate': 0.15, 'max_depth': 3, 'n_estimators': 150}
136. 0.860202 (0.056060) with: {'learning_rate': 0.15, 'max_depth': 3, 'n_estimators': 200}
137. 0.851480 (0.042938) with: {'learning_rate': 0.15, 'max_depth': 5, 'n_estimators': 50}
138. 0.852485 (0.043547) with: {'learning_rate': 0.15, 'max_depth': 5, 'n_estimators': 100}
139. 0.852983 (0.043729) with: {'learning_rate': 0.15, 'max_depth': 5, 'n_estimators': 150}
140. 0.853004 (0.043800) with: {'learning_rate': 0.15, 'max_depth': 5, 'n_estimators': 200}
141. 0.811017 (0.051230) with: {'learning_rate': 0.15, 'max_depth': 7, 'n_estimators': 50}
142. 0.811935 (0.051563) with: {'learning_rate': 0.15, 'max_depth': 7, 'n_estimators': 100}
143. 0.812016 (0.051550) with: {'learning_rate': 0.15, 'max_depth': 7, 'n_estimators': 150}
144. 0.812016 (0.051550) with: {'learning_rate': 0.15, 'max_depth': 7, 'n_estimators': 200}
145. 0.807335 (0.054503) with: {'learning_rate': 0.15, 'max_depth': 9, 'n_estimators': 50}
146. 0.807742 (0.054438) with: {'learning_rate': 0.15, 'max_depth': 9, 'n_estimators': 100}
147. 0.807742 (0.054438) with: {'learning_rate': 0.15, 'max_depth': 9, 'n_estimators': 150}
148. 0.807742 (0.054438) with: {'learning_rate': 0.15, 'max_depth': 9, 'n_estimators': 200}
149. 0.810597 (0.052285) with: {'learning_rate': 0.15, 'max_depth': 11, 'n_estimators': 50}
150. 0.810936 (0.052312) with: {'learning_rate': 0.15, 'max_depth': 11, 'n_estimators': 100}
151. 0.810936 (0.052312) with: {'learning_rate': 0.15, 'max_depth': 11, 'n_estimators': 150}
152. 0.810936 (0.052312) with: {'learning_rate': 0.15, 'max_depth': 11, 'n_estimators': 200}
153. 0.814041 (0.049302) with: {'learning_rate': 0.15, 'max_depth': 13, 'n_estimators': 50}
154. 0.814413 (0.049371) with: {'learning_rate': 0.15, 'max_depth': 13, 'n_estimators': 100}
155. 0.814413 (0.049371) with: {'learning_rate': 0.15, 'max_depth': 13, 'n_estimators': 150}
156. 0.814413 (0.049371) with: {'learning_rate': 0.15, 'max_depth': 13, 'n_estimators': 200}
157. 0.807168 (0.053947) with: {'learning_rate': 0.15, 'max_depth': 15, 'n_estimators': 50}
158. 0.807499 (0.054091) with: {'learning_rate': 0.15, 'max_depth': 15, 'n_estimators': 100}
159. 0.807499 (0.054091) with: {'learning_rate': 0.15, 'max_depth': 15, 'n_estimators': 150}
160. 0.807499 (0.054091) with: {'learning_rate': 0.15, 'max_depth': 15, 'n_estimators': 200}
161. 0.810923 (0.050566) with: {'learning_rate': 0.18, 'max_depth': 1, 'n_estimators': 50}
162. 0.826561 (0.050272) with: {'learning_rate': 0.18, 'max_depth': 1, 'n_estimators': 100}
163. 0.830294 (0.049726) with: {'learning_rate': 0.18, 'max_depth': 1, 'n_estimators': 150}
164. 0.830412 (0.050068) with: {'learning_rate': 0.18, 'max_depth': 1, 'n_estimators': 200}
165. 0.847566 (0.059016) with: {'learning_rate': 0.18, 'max_depth': 3, 'n_estimators': 50}
166. 0.854473 (0.056008) with: {'learning_rate': 0.18, 'max_depth': 3, 'n_estimators': 100}
167. 0.855668 (0.056143) with: {'learning_rate': 0.18, 'max_depth': 3, 'n_estimators': 150}
168. 0.855706 (0.055851) with: {'learning_rate': 0.18, 'max_depth': 3, 'n_estimators': 200}
169. 0.841307 (0.052664) with: {'learning_rate': 0.18, 'max_depth': 5, 'n_estimators': 50}
170. 0.841590 (0.053217) with: {'learning_rate': 0.18, 'max_depth': 5, 'n_estimators': 100}
171. 0.841445 (0.053423) with: {'learning_rate': 0.18, 'max_depth': 5, 'n_estimators': 150}
172. 0.841435 (0.053478) with: {'learning_rate': 0.18, 'max_depth': 5, 'n_estimators': 200}
173. 0.807878 (0.052757) with: {'learning_rate': 0.18, 'max_depth': 7, 'n_estimators': 50}
174. 0.808334 (0.052373) with: {'learning_rate': 0.18, 'max_depth': 7, 'n_estimators': 100}
175. 0.808363 (0.052378) with: {'learning_rate': 0.18, 'max_depth': 7, 'n_estimators': 150}
176. 0.808363 (0.052378) with: {'learning_rate': 0.18, 'max_depth': 7, 'n_estimators': 200}
177. 0.804948 (0.054592) with: {'learning_rate': 0.18, 'max_depth': 9, 'n_estimators': 50}
178. 0.805130 (0.054519) with: {'learning_rate': 0.18, 'max_depth': 9, 'n_estimators': 100}
179. 0.805130 (0.054519) with: {'learning_rate': 0.18, 'max_depth': 9, 'n_estimators': 150}
180. 0.805130 (0.054519) with: {'learning_rate': 0.18, 'max_depth': 9, 'n_estimators': 200}
181. 0.803086 (0.052977) with: {'learning_rate': 0.18, 'max_depth': 11, 'n_estimators': 50}
182. 0.803229 (0.052990) with: {'learning_rate': 0.18, 'max_depth': 11, 'n_estimators': 100}
183. 0.803229 (0.052990) with: {'learning_rate': 0.18, 'max_depth': 11, 'n_estimators': 150}
184. 0.803229 (0.052990) with: {'learning_rate': 0.18, 'max_depth': 11, 'n_estimators': 200}
185. 0.806149 (0.054086) with: {'learning_rate': 0.18, 'max_depth': 13, 'n_estimators': 50}
186. 0.806294 (0.054156) with: {'learning_rate': 0.18, 'max_depth': 13, 'n_estimators': 100}
187. 0.806294 (0.054156) with: {'learning_rate': 0.18, 'max_depth': 13, 'n_estimators': 150}
188. 0.806294 (0.054156) with: {'learning_rate': 0.18, 'max_depth': 13, 'n_estimators': 200}
189. 0.805339 (0.054438) with: {'learning_rate': 0.18, 'max_depth': 15, 'n_estimators': 50}
190. 0.805497 (0.054478) with: {'learning_rate': 0.18, 'max_depth': 15, 'n_estimators': 100}
191. 0.805497 (0.054478) with: {'learning_rate': 0.18, 'max_depth': 15, 'n_estimators': 150}
192. 0.805497 (0.054478) with: {'learning_rate': 0.18, 'max_depth': 15, 'n_estimators': 200}
193. 0.818772 (0.048965) with: {'learning_rate': 0.21, 'max_depth': 1, 'n_estimators': 50}
194. 0.830305 (0.048710) with: {'learning_rate': 0.21, 'max_depth': 1, 'n_estimators': 100}
195. 0.832875 (0.048551) with: {'learning_rate': 0.21, 'max_depth': 1, 'n_estimators': 150}
196. 0.833115 (0.049489) with: {'learning_rate': 0.21, 'max_depth': 1, 'n_estimators': 200}
197. 0.852619 (0.055268) with: {'learning_rate': 0.21, 'max_depth': 3, 'n_estimators': 50}
198. 0.854279 (0.055507) with: {'learning_rate': 0.21, 'max_depth': 3, 'n_estimators': 100}
199. 0.855926 (0.055786) with: {'learning_rate': 0.21, 'max_depth': 3, 'n_estimators': 150}
200. 0.857225 (0.055403) with: {'learning_rate': 0.21, 'max_depth': 3, 'n_estimators': 200}
201. 0.844948 (0.048417) with: {'learning_rate': 0.21, 'max_depth': 5, 'n_estimators': 50}
202. 0.844659 (0.048358) with: {'learning_rate': 0.21, 'max_depth': 5, 'n_estimators': 100}
203. 0.844761 (0.048342) with: {'learning_rate': 0.21, 'max_depth': 5, 'n_estimators': 150}
204. 0.844807 (0.048326) with: {'learning_rate': 0.21, 'max_depth': 5, 'n_estimators': 200}
205. 0.816587 (0.052132) with: {'learning_rate': 0.21, 'max_depth': 7, 'n_estimators': 50}
206. 0.816323 (0.052509) with: {'learning_rate': 0.21, 'max_depth': 7, 'n_estimators': 100}
207. 0.816322 (0.052509) with: {'learning_rate': 0.21, 'max_depth': 7, 'n_estimators': 150}
208. 0.816322 (0.052509) with: {'learning_rate': 0.21, 'max_depth': 7, 'n_estimators': 200}
209. 0.807687 (0.050865) with: {'learning_rate': 0.21, 'max_depth': 9, 'n_estimators': 50}
210. 0.807783 (0.050856) with: {'learning_rate': 0.21, 'max_depth': 9, 'n_estimators': 100}
211. 0.807783 (0.050856) with: {'learning_rate': 0.21, 'max_depth': 9, 'n_estimators': 150}
212. 0.807783 (0.050856) with: {'learning_rate': 0.21, 'max_depth': 9, 'n_estimators': 200}
213. 0.807752 (0.054800) with: {'learning_rate': 0.21, 'max_depth': 11, 'n_estimators': 50}
214. 0.807782 (0.054819) with: {'learning_rate': 0.21, 'max_depth': 11, 'n_estimators': 100}
215. 0.807782 (0.054819) with: {'learning_rate': 0.21, 'max_depth': 11, 'n_estimators': 150}
216. 0.807782 (0.054819) with: {'learning_rate': 0.21, 'max_depth': 11, 'n_estimators': 200}
217. 0.806377 (0.052411) with: {'learning_rate': 0.21, 'max_depth': 13, 'n_estimators': 50}
218. 0.806415 (0.052447) with: {'learning_rate': 0.21, 'max_depth': 13, 'n_estimators': 100}
219. 0.806415 (0.052447) with: {'learning_rate': 0.21, 'max_depth': 13, 'n_estimators': 150}
220. 0.806415 (0.052447) with: {'learning_rate': 0.21, 'max_depth': 13, 'n_estimators': 200}
221. 0.807638 (0.052222) with: {'learning_rate': 0.21, 'max_depth': 15, 'n_estimators': 50}
222. 0.807671 (0.052247) with: {'learning_rate': 0.21, 'max_depth': 15, 'n_estimators': 100}
223. 0.807671 (0.052247) with: {'learning_rate': 0.21, 'max_depth': 15, 'n_estimators': 150}
224. 0.807671 (0.052247) with: {'learning_rate': 0.21, 'max_depth': 15, 'n_estimators': 200}
225. 0.819971 (0.046487) with: {'learning_rate': 0.24, 'max_depth': 1, 'n_estimators': 50}
226. 0.830501 (0.048655) with: {'learning_rate': 0.24, 'max_depth': 1, 'n_estimators': 100}
227. 0.832064 (0.049740) with: {'learning_rate': 0.24, 'max_depth': 1, 'n_estimators': 150}
228. 0.831840 (0.050128) with: {'learning_rate': 0.24, 'max_depth': 1, 'n_estimators': 200}
229. 0.857136 (0.046683) with: {'learning_rate': 0.24, 'max_depth': 3, 'n_estimators': 50}
230. 0.859483 (0.045770) with: {'learning_rate': 0.24, 'max_depth': 3, 'n_estimators': 100}
231. 0.859945 (0.045322) with: {'learning_rate': 0.24, 'max_depth': 3, 'n_estimators': 150}
232. 0.859801 (0.045460) with: {'learning_rate': 0.24, 'max_depth': 3, 'n_estimators': 200}
233. 0.850955 (0.049845) with: {'learning_rate': 0.24, 'max_depth': 5, 'n_estimators': 50}
234. 0.850508 (0.050615) with: {'learning_rate': 0.24, 'max_depth': 5, 'n_estimators': 100}
235. 0.850476 (0.050598) with: {'learning_rate': 0.24, 'max_depth': 5, 'n_estimators': 150}
236. 0.850498 (0.050571) with: {'learning_rate': 0.24, 'max_depth': 5, 'n_estimators': 200}
237. 0.811733 (0.057462) with: {'learning_rate': 0.24, 'max_depth': 7, 'n_estimators': 50}
238. 0.811878 (0.057440) with: {'learning_rate': 0.24, 'max_depth': 7, 'n_estimators': 100}
239. 0.811878 (0.057440) with: {'learning_rate': 0.24, 'max_depth': 7, 'n_estimators': 150}
240. 0.811878 (0.057440) with: {'learning_rate': 0.24, 'max_depth': 7, 'n_estimators': 200}
241. 0.807850 (0.060428) with: {'learning_rate': 0.24, 'max_depth': 9, 'n_estimators': 50}
242. 0.807894 (0.060424) with: {'learning_rate': 0.24, 'max_depth': 9, 'n_estimators': 100}
243. 0.807894 (0.060424) with: {'learning_rate': 0.24, 'max_depth': 9, 'n_estimators': 150}
244. 0.807894 (0.060424) with: {'learning_rate': 0.24, 'max_depth': 9, 'n_estimators': 200}
245. 0.802244 (0.059772) with: {'learning_rate': 0.24, 'max_depth': 11, 'n_estimators': 50}
246. 0.802246 (0.059770) with: {'learning_rate': 0.24, 'max_depth': 11, 'n_estimators': 100}
247. 0.802246 (0.059770) with: {'learning_rate': 0.24, 'max_depth': 11, 'n_estimators': 150}
248. 0.802246 (0.059770) with: {'learning_rate': 0.24, 'max_depth': 11, 'n_estimators': 200}
249. 0.807033 (0.061863) with: {'learning_rate': 0.24, 'max_depth': 13, 'n_estimators': 50}
250. 0.807040 (0.061864) with: {'learning_rate': 0.24, 'max_depth': 13, 'n_estimators': 100}
251. 0.807040 (0.061864) with: {'learning_rate': 0.24, 'max_depth': 13, 'n_estimators': 150}
252. 0.807040 (0.061864) with: {'learning_rate': 0.24, 'max_depth': 13, 'n_estimators': 200}
253. 0.804463 (0.063512) with: {'learning_rate': 0.24, 'max_depth': 15, 'n_estimators': 50}
254. 0.804475 (0.063511) with: {'learning_rate': 0.24, 'max_depth': 15, 'n_estimators': 100}
255. 0.804475 (0.063511) with: {'learning_rate': 0.24, 'max_depth': 15, 'n_estimators': 150}
256. 0.804475 (0.063511) with: {'learning_rate': 0.24, 'max_depth': 15, 'n_estimators': 200}
257. 0.821150 (0.049890) with: {'learning_rate': 0.27, 'max_depth': 1, 'n_estimators': 50}
258. 0.830742 (0.049213) with: {'learning_rate': 0.27, 'max_depth': 1, 'n_estimators': 100}
259. 0.831787 (0.050679) with: {'learning_rate': 0.27, 'max_depth': 1, 'n_estimators': 150}
260. 0.830709 (0.051395) with: {'learning_rate': 0.27, 'max_depth': 1, 'n_estimators': 200}
261. 0.857873 (0.052985) with: {'learning_rate': 0.27, 'max_depth': 3, 'n_estimators': 50}
262. 0.861046 (0.050332) with: {'learning_rate': 0.27, 'max_depth': 3, 'n_estimators': 100}
263. 0.861720 (0.049712) with: {'learning_rate': 0.27, 'max_depth': 3, 'n_estimators': 150}
264. 0.861372 (0.049998) with: {'learning_rate': 0.27, 'max_depth': 3, 'n_estimators': 200}
265. 0.847206 (0.051159) with: {'learning_rate': 0.27, 'max_depth': 5, 'n_estimators': 50}
266. 0.847094 (0.051525) with: {'learning_rate': 0.27, 'max_depth': 5, 'n_estimators': 100}
267. 0.847037 (0.051513) with: {'learning_rate': 0.27, 'max_depth': 5, 'n_estimators': 150}
268. 0.847035 (0.051514) with: {'learning_rate': 0.27, 'max_depth': 5, 'n_estimators': 200}
269. 0.803202 (0.050403) with: {'learning_rate': 0.27, 'max_depth': 7, 'n_estimators': 50}
270. 0.803226 (0.050360) with: {'learning_rate': 0.27, 'max_depth': 7, 'n_estimators': 100}
271. 0.803226 (0.050360) with: {'learning_rate': 0.27, 'max_depth': 7, 'n_estimators': 150}
272. 0.803226 (0.050360) with: {'learning_rate': 0.27, 'max_depth': 7, 'n_estimators': 200}
273. 0.806931 (0.056619) with: {'learning_rate': 0.27, 'max_depth': 9, 'n_estimators': 50}
274. 0.806930 (0.056616) with: {'learning_rate': 0.27, 'max_depth': 9, 'n_estimators': 100}
275. 0.806930 (0.056616) with: {'learning_rate': 0.27, 'max_depth': 9, 'n_estimators': 150}
276. 0.806930 (0.056616) with: {'learning_rate': 0.27, 'max_depth': 9, 'n_estimators': 200}
277. 0.802898 (0.060888) with: {'learning_rate': 0.27, 'max_depth': 11, 'n_estimators': 50}
278. 0.802900 (0.060887) with: {'learning_rate': 0.27, 'max_depth': 11, 'n_estimators': 100}
279. 0.802900 (0.060887) with: {'learning_rate': 0.27, 'max_depth': 11, 'n_estimators': 150}
280. 0.802900 (0.060887) with: {'learning_rate': 0.27, 'max_depth': 11, 'n_estimators': 200}
281. 0.799887 (0.055534) with: {'learning_rate': 0.27, 'max_depth': 13, 'n_estimators': 50}
282. 0.799886 (0.055534) with: {'learning_rate': 0.27, 'max_depth': 13, 'n_estimators': 100}
283. 0.799886 (0.055534) with: {'learning_rate': 0.27, 'max_depth': 13, 'n_estimators': 150}
284. 0.799886 (0.055534) with: {'learning_rate': 0.27, 'max_depth': 13, 'n_estimators': 200}
285. 0.800050 (0.056070) with: {'learning_rate': 0.27, 'max_depth': 15, 'n_estimators': 50}
286. 0.800051 (0.056071) with: {'learning_rate': 0.27, 'max_depth': 15, 'n_estimators': 100}
287. 0.800051 (0.056071) with: {'learning_rate': 0.27, 'max_depth': 15, 'n_estimators': 150}
288. 0.800051 (0.056071) with: {'learning_rate': 0.27, 'max_depth': 15, 'n_estimators': 200}
289. 0.819760 (0.053159) with: {'learning_rate': 0.3, 'max_depth': 1, 'n_estimators': 50}
290. 0.827881 (0.052422) with: {'learning_rate': 0.3, 'max_depth': 1, 'n_estimators': 100}
291. 0.828890 (0.053188) with: {'learning_rate': 0.3, 'max_depth': 1, 'n_estimators': 150}
292. 0.829313 (0.052821) with: {'learning_rate': 0.3, 'max_depth': 1, 'n_estimators': 200}
293. 0.854570 (0.052578) with: {'learning_rate': 0.3, 'max_depth': 3, 'n_estimators': 50}
294. 0.857880 (0.050891) with: {'learning_rate': 0.3, 'max_depth': 3, 'n_estimators': 100}
295. 0.858274 (0.051601) with: {'learning_rate': 0.3, 'max_depth': 3, 'n_estimators': 150}
296. 0.858004 (0.051720) with: {'learning_rate': 0.3, 'max_depth': 3, 'n_estimators': 200}
297. 0.837382 (0.048349) with: {'learning_rate': 0.3, 'max_depth': 5, 'n_estimators': 50}
298. 0.837511 (0.048140) with: {'learning_rate': 0.3, 'max_depth': 5, 'n_estimators': 100}
299. 0.837538 (0.048128) with: {'learning_rate': 0.3, 'max_depth': 5, 'n_estimators': 150}
300. 0.837538 (0.048128) with: {'learning_rate': 0.3, 'max_depth': 5, 'n_estimators': 200}
301. 0.814336 (0.051179) with: {'learning_rate': 0.3, 'max_depth': 7, 'n_estimators': 50}
302. 0.814383 (0.051205) with: {'learning_rate': 0.3, 'max_depth': 7, 'n_estimators': 100}
303. 0.814383 (0.051205) with: {'learning_rate': 0.3, 'max_depth': 7, 'n_estimators': 150}
304. 0.814383 (0.051205) with: {'learning_rate': 0.3, 'max_depth': 7, 'n_estimators': 200}
305. 0.806069 (0.051545) with: {'learning_rate': 0.3, 'max_depth': 9, 'n_estimators': 50}
306. 0.806069 (0.051545) with: {'learning_rate': 0.3, 'max_depth': 9, 'n_estimators': 100}
307. 0.806069 (0.051545) with: {'learning_rate': 0.3, 'max_depth': 9, 'n_estimators': 150}
308. 0.806069 (0.051545) with: {'learning_rate': 0.3, 'max_depth': 9, 'n_estimators': 200}
309. 0.810698 (0.049687) with: {'learning_rate': 0.3, 'max_depth': 11, 'n_estimators': 50}
310. 0.810698 (0.049687) with: {'learning_rate': 0.3, 'max_depth': 11, 'n_estimators': 100}
311. 0.810698 (0.049687) with: {'learning_rate': 0.3, 'max_depth': 11, 'n_estimators': 150}
312. 0.810698 (0.049687) with: {'learning_rate': 0.3, 'max_depth': 11, 'n_estimators': 200}
313. 0.807420 (0.051992) with: {'learning_rate': 0.3, 'max_depth': 13, 'n_estimators': 50}
314. 0.807420 (0.051992) with: {'learning_rate': 0.3, 'max_depth': 13, 'n_estimators': 100}
315. 0.807420 (0.051992) with: {'learning_rate': 0.3, 'max_depth': 13, 'n_estimators': 150}
316. 0.807420 (0.051992) with: {'learning_rate': 0.3, 'max_depth': 13, 'n_estimators': 200}
317. 0.803384 (0.054540) with: {'learning_rate': 0.3, 'max_depth': 15, 'n_estimators': 50}
318. 0.803384 (0.054540) with: {'learning_rate': 0.3, 'max_depth': 15, 'n_estimators': 100}
319. 0.803384 (0.054540) with: {'learning_rate': 0.3, 'max_depth': 15, 'n_estimators': 150}
320. 0.803384 (0.054540) with: {'learning_rate': 0.3, 'max_depth': 15, 'n_estimators': 200}

 

 

 

T2、TimeSeriesSplit=GSCV模型调参

输出XGBR_GSCV模型最佳得分、最优参数:0.8772,{'learning_rate': 0.15, 'max_depth': 3, 'n_estimators': 200}

XGBR_TimeS_GSCV time: 365.73213645175

XGBoost Score value: 0.8392863414585984

XGBoost R2    value: 0.8392863414585984

XGBoost MAE   value: 2.265871170374352

XGBoost RMSE  value: 3.5301480357113575

1. Fitting 6 folds for each of 320 candidates, totalling 1920 fits
2. [Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
3. [Parallel(n_jobs=1)]: Done 1920 out of 1920 | elapsed:  6.1min finished
4. 0.601753 (0.041626) with: {'learning_rate': 0.03, 'max_depth': 1, 'n_estimators': 50}
5. 0.741963 (0.052567) with: {'learning_rate': 0.03, 'max_depth': 1, 'n_estimators': 100}
6. 0.769275 (0.057973) with: {'learning_rate': 0.03, 'max_depth': 1, 'n_estimators': 150}
7. 0.777850 (0.062691) with: {'learning_rate': 0.03, 'max_depth': 1, 'n_estimators': 200}
8. 0.761917 (0.044601) with: {'learning_rate': 0.03, 'max_depth': 3, 'n_estimators': 50}
9. 0.849871 (0.032589) with: {'learning_rate': 0.03, 'max_depth': 3, 'n_estimators': 100}
10. 0.860943 (0.036123) with: {'learning_rate': 0.03, 'max_depth': 3, 'n_estimators': 150}
11. 0.865884 (0.036296) with: {'learning_rate': 0.03, 'max_depth': 3, 'n_estimators': 200}
12. 0.768191 (0.046584) with: {'learning_rate': 0.03, 'max_depth': 5, 'n_estimators': 50}
13. 0.847475 (0.037179) with: {'learning_rate': 0.03, 'max_depth': 5, 'n_estimators': 100}
14. 0.857618 (0.034498) with: {'learning_rate': 0.03, 'max_depth': 5, 'n_estimators': 150}
15. 0.860371 (0.034667) with: {'learning_rate': 0.03, 'max_depth': 5, 'n_estimators': 200}
16. 0.762532 (0.043118) with: {'learning_rate': 0.03, 'max_depth': 7, 'n_estimators': 50}
17. 0.838141 (0.032139) with: {'learning_rate': 0.03, 'max_depth': 7, 'n_estimators': 100}
18. 0.846885 (0.027194) with: {'learning_rate': 0.03, 'max_depth': 7, 'n_estimators': 150}
19. 0.850041 (0.025481) with: {'learning_rate': 0.03, 'max_depth': 7, 'n_estimators': 200}
20. 0.757383 (0.050920) with: {'learning_rate': 0.03, 'max_depth': 9, 'n_estimators': 50}
21. 0.834539 (0.037476) with: {'learning_rate': 0.03, 'max_depth': 9, 'n_estimators': 100}
22. 0.845794 (0.033418) with: {'learning_rate': 0.03, 'max_depth': 9, 'n_estimators': 150}
23. 0.848075 (0.032044) with: {'learning_rate': 0.03, 'max_depth': 9, 'n_estimators': 200}
24. 0.754782 (0.053572) with: {'learning_rate': 0.03, 'max_depth': 11, 'n_estimators': 50}
25. 0.831093 (0.039371) with: {'learning_rate': 0.03, 'max_depth': 11, 'n_estimators': 100}
26. 0.838982 (0.034142) with: {'learning_rate': 0.03, 'max_depth': 11, 'n_estimators': 150}
27. 0.841296 (0.031967) with: {'learning_rate': 0.03, 'max_depth': 11, 'n_estimators': 200}
28. 0.756791 (0.051747) with: {'learning_rate': 0.03, 'max_depth': 13, 'n_estimators': 50}
29. 0.830920 (0.039090) with: {'learning_rate': 0.03, 'max_depth': 13, 'n_estimators': 100}
30. 0.840551 (0.032427) with: {'learning_rate': 0.03, 'max_depth': 13, 'n_estimators': 150}
31. 0.843931 (0.030071) with: {'learning_rate': 0.03, 'max_depth': 13, 'n_estimators': 200}
32. 0.756117 (0.054046) with: {'learning_rate': 0.03, 'max_depth': 15, 'n_estimators': 50}
33. 0.831666 (0.040286) with: {'learning_rate': 0.03, 'max_depth': 15, 'n_estimators': 100}
34. 0.840035 (0.034584) with: {'learning_rate': 0.03, 'max_depth': 15, 'n_estimators': 150}
35. 0.843151 (0.032286) with: {'learning_rate': 0.03, 'max_depth': 15, 'n_estimators': 200}
36. 0.745626 (0.052724) with: {'learning_rate': 0.06, 'max_depth': 1, 'n_estimators': 50}
37. 0.777825 (0.062635) with: {'learning_rate': 0.06, 'max_depth': 1, 'n_estimators': 100}
38. 0.790555 (0.063551) with: {'learning_rate': 0.06, 'max_depth': 1, 'n_estimators': 150}
39. 0.795161 (0.067328) with: {'learning_rate': 0.06, 'max_depth': 1, 'n_estimators': 200}
40. 0.850889 (0.032347) with: {'learning_rate': 0.06, 'max_depth': 3, 'n_estimators': 50}
41. 0.867786 (0.034764) with: {'learning_rate': 0.06, 'max_depth': 3, 'n_estimators': 100}
42. 0.870313 (0.035557) with: {'learning_rate': 0.06, 'max_depth': 3, 'n_estimators': 150}
43. 0.870957 (0.036189) with: {'learning_rate': 0.06, 'max_depth': 3, 'n_estimators': 200}
44. 0.850339 (0.038543) with: {'learning_rate': 0.06, 'max_depth': 5, 'n_estimators': 50}
45. 0.864939 (0.034315) with: {'learning_rate': 0.06, 'max_depth': 5, 'n_estimators': 100}
46. 0.865762 (0.033280) with: {'learning_rate': 0.06, 'max_depth': 5, 'n_estimators': 150}
47. 0.865658 (0.032928) with: {'learning_rate': 0.06, 'max_depth': 5, 'n_estimators': 200}
48. 0.839195 (0.034252) with: {'learning_rate': 0.06, 'max_depth': 7, 'n_estimators': 50}
49. 0.852720 (0.027235) with: {'learning_rate': 0.06, 'max_depth': 7, 'n_estimators': 100}
50. 0.853702 (0.027123) with: {'learning_rate': 0.06, 'max_depth': 7, 'n_estimators': 150}
51. 0.853363 (0.026771) with: {'learning_rate': 0.06, 'max_depth': 7, 'n_estimators': 200}
52. 0.835426 (0.038498) with: {'learning_rate': 0.06, 'max_depth': 9, 'n_estimators': 50}
53. 0.850673 (0.029506) with: {'learning_rate': 0.06, 'max_depth': 9, 'n_estimators': 100}
54. 0.851901 (0.028517) with: {'learning_rate': 0.06, 'max_depth': 9, 'n_estimators': 150}
55. 0.852140 (0.028341) with: {'learning_rate': 0.06, 'max_depth': 9, 'n_estimators': 200}
56. 0.830953 (0.038574) with: {'learning_rate': 0.06, 'max_depth': 11, 'n_estimators': 50}
57. 0.843297 (0.032231) with: {'learning_rate': 0.06, 'max_depth': 11, 'n_estimators': 100}
58. 0.844927 (0.031055) with: {'learning_rate': 0.06, 'max_depth': 11, 'n_estimators': 150}
59. 0.845079 (0.030915) with: {'learning_rate': 0.06, 'max_depth': 11, 'n_estimators': 200}
60. 0.832709 (0.036911) with: {'learning_rate': 0.06, 'max_depth': 13, 'n_estimators': 50}
61. 0.844690 (0.029680) with: {'learning_rate': 0.06, 'max_depth': 13, 'n_estimators': 100}
62. 0.846225 (0.028501) with: {'learning_rate': 0.06, 'max_depth': 13, 'n_estimators': 150}
63. 0.846421 (0.028346) with: {'learning_rate': 0.06, 'max_depth': 13, 'n_estimators': 200}
64. 0.832991 (0.037219) with: {'learning_rate': 0.06, 'max_depth': 15, 'n_estimators': 50}
65. 0.846270 (0.027385) with: {'learning_rate': 0.06, 'max_depth': 15, 'n_estimators': 100}
66. 0.847907 (0.026163) with: {'learning_rate': 0.06, 'max_depth': 15, 'n_estimators': 150}
67. 0.848179 (0.025976) with: {'learning_rate': 0.06, 'max_depth': 15, 'n_estimators': 200}
68. 0.769494 (0.058840) with: {'learning_rate': 0.09, 'max_depth': 1, 'n_estimators': 50}
69. 0.791904 (0.061566) with: {'learning_rate': 0.09, 'max_depth': 1, 'n_estimators': 100}
70. 0.798994 (0.066574) with: {'learning_rate': 0.09, 'max_depth': 1, 'n_estimators': 150}
71. 0.803098 (0.068958) with: {'learning_rate': 0.09, 'max_depth': 1, 'n_estimators': 200}
72. 0.857212 (0.039482) with: {'learning_rate': 0.09, 'max_depth': 3, 'n_estimators': 50}
73. 0.864690 (0.041052) with: {'learning_rate': 0.09, 'max_depth': 3, 'n_estimators': 100}
74. 0.866892 (0.042026) with: {'learning_rate': 0.09, 'max_depth': 3, 'n_estimators': 150}
75. 0.867056 (0.044514) with: {'learning_rate': 0.09, 'max_depth': 3, 'n_estimators': 200}
76. 0.863862 (0.033670) with: {'learning_rate': 0.09, 'max_depth': 5, 'n_estimators': 50}
77. 0.867507 (0.032224) with: {'learning_rate': 0.09, 'max_depth': 5, 'n_estimators': 100}
78. 0.867579 (0.032191) with: {'learning_rate': 0.09, 'max_depth': 5, 'n_estimators': 150}
79. 0.867328 (0.032260) with: {'learning_rate': 0.09, 'max_depth': 5, 'n_estimators': 200}
80. 0.847872 (0.030395) with: {'learning_rate': 0.09, 'max_depth': 7, 'n_estimators': 50}
81. 0.851244 (0.028736) with: {'learning_rate': 0.09, 'max_depth': 7, 'n_estimators': 100}
82. 0.851237 (0.028451) with: {'learning_rate': 0.09, 'max_depth': 7, 'n_estimators': 150}
83. 0.851150 (0.028505) with: {'learning_rate': 0.09, 'max_depth': 7, 'n_estimators': 200}
84. 0.852037 (0.030096) with: {'learning_rate': 0.09, 'max_depth': 9, 'n_estimators': 50}
85. 0.856354 (0.027161) with: {'learning_rate': 0.09, 'max_depth': 9, 'n_estimators': 100}
86. 0.856581 (0.027075) with: {'learning_rate': 0.09, 'max_depth': 9, 'n_estimators': 150}
87. 0.856585 (0.027095) with: {'learning_rate': 0.09, 'max_depth': 9, 'n_estimators': 200}
88. 0.842612 (0.037117) with: {'learning_rate': 0.09, 'max_depth': 11, 'n_estimators': 50}
89. 0.846502 (0.034153) with: {'learning_rate': 0.09, 'max_depth': 11, 'n_estimators': 100}
90. 0.846631 (0.034112) with: {'learning_rate': 0.09, 'max_depth': 11, 'n_estimators': 150}
91. 0.846628 (0.034114) with: {'learning_rate': 0.09, 'max_depth': 11, 'n_estimators': 200}
92. 0.837185 (0.045250) with: {'learning_rate': 0.09, 'max_depth': 13, 'n_estimators': 50}
93. 0.841045 (0.042592) with: {'learning_rate': 0.09, 'max_depth': 13, 'n_estimators': 100}
94. 0.841290 (0.042421) with: {'learning_rate': 0.09, 'max_depth': 13, 'n_estimators': 150}
95. 0.841292 (0.042423) with: {'learning_rate': 0.09, 'max_depth': 13, 'n_estimators': 200}
96. 0.836856 (0.044501) with: {'learning_rate': 0.09, 'max_depth': 15, 'n_estimators': 50}
97. 0.841215 (0.041712) with: {'learning_rate': 0.09, 'max_depth': 15, 'n_estimators': 100}
98. 0.841468 (0.041614) with: {'learning_rate': 0.09, 'max_depth': 15, 'n_estimators': 150}
99. 0.841467 (0.041616) with: {'learning_rate': 0.09, 'max_depth': 15, 'n_estimators': 200}
100. 0.780448 (0.061299) with: {'learning_rate': 0.12, 'max_depth': 1, 'n_estimators': 50}
101. 0.795945 (0.066888) with: {'learning_rate': 0.12, 'max_depth': 1, 'n_estimators': 100}
102. 0.802161 (0.068522) with: {'learning_rate': 0.12, 'max_depth': 1, 'n_estimators': 150}
103. 0.802621 (0.068183) with: {'learning_rate': 0.12, 'max_depth': 1, 'n_estimators': 200}
104. 0.865637 (0.033886) with: {'learning_rate': 0.12, 'max_depth': 3, 'n_estimators': 50}
105. 0.867696 (0.038014) with: {'learning_rate': 0.12, 'max_depth': 3, 'n_estimators': 100}
106. 0.867815 (0.038860) with: {'learning_rate': 0.12, 'max_depth': 3, 'n_estimators': 150}
107. 0.867725 (0.040073) with: {'learning_rate': 0.12, 'max_depth': 3, 'n_estimators': 200}
108. 0.862285 (0.036140) with: {'learning_rate': 0.12, 'max_depth': 5, 'n_estimators': 50}
109. 0.862022 (0.035454) with: {'learning_rate': 0.12, 'max_depth': 5, 'n_estimators': 100}
110. 0.860983 (0.034947) with: {'learning_rate': 0.12, 'max_depth': 5, 'n_estimators': 150}
111. 0.860190 (0.035108) with: {'learning_rate': 0.12, 'max_depth': 5, 'n_estimators': 200}
112. 0.842677 (0.036587) with: {'learning_rate': 0.12, 'max_depth': 7, 'n_estimators': 50}
113. 0.843950 (0.035671) with: {'learning_rate': 0.12, 'max_depth': 7, 'n_estimators': 100}
114. 0.843875 (0.035644) with: {'learning_rate': 0.12, 'max_depth': 7, 'n_estimators': 150}
115. 0.843844 (0.035605) with: {'learning_rate': 0.12, 'max_depth': 7, 'n_estimators': 200}
116. 0.843541 (0.033950) with: {'learning_rate': 0.12, 'max_depth': 9, 'n_estimators': 50}
117. 0.845166 (0.033044) with: {'learning_rate': 0.12, 'max_depth': 9, 'n_estimators': 100}
118. 0.845168 (0.033025) with: {'learning_rate': 0.12, 'max_depth': 9, 'n_estimators': 150}
119. 0.845168 (0.033025) with: {'learning_rate': 0.12, 'max_depth': 9, 'n_estimators': 200}
120. 0.836159 (0.037345) with: {'learning_rate': 0.12, 'max_depth': 11, 'n_estimators': 50}
121. 0.838014 (0.036395) with: {'learning_rate': 0.12, 'max_depth': 11, 'n_estimators': 100}
122. 0.838049 (0.036371) with: {'learning_rate': 0.12, 'max_depth': 11, 'n_estimators': 150}
123. 0.838049 (0.036371) with: {'learning_rate': 0.12, 'max_depth': 11, 'n_estimators': 200}
124. 0.836390 (0.036978) with: {'learning_rate': 0.12, 'max_depth': 13, 'n_estimators': 50}
125. 0.838276 (0.035834) with: {'learning_rate': 0.12, 'max_depth': 13, 'n_estimators': 100}
126. 0.838287 (0.035842) with: {'learning_rate': 0.12, 'max_depth': 13, 'n_estimators': 150}
127. 0.838287 (0.035842) with: {'learning_rate': 0.12, 'max_depth': 13, 'n_estimators': 200}
128. 0.832744 (0.040432) with: {'learning_rate': 0.12, 'max_depth': 15, 'n_estimators': 50}
129. 0.834029 (0.039399) with: {'learning_rate': 0.12, 'max_depth': 15, 'n_estimators': 100}
130. 0.834041 (0.039407) with: {'learning_rate': 0.12, 'max_depth': 15, 'n_estimators': 150}
131. 0.834041 (0.039407) with: {'learning_rate': 0.12, 'max_depth': 15, 'n_estimators': 200}
132. 0.788286 (0.060777) with: {'learning_rate': 0.15, 'max_depth': 1, 'n_estimators': 50}
133. 0.800992 (0.066420) with: {'learning_rate': 0.15, 'max_depth': 1, 'n_estimators': 100}
134. 0.805570 (0.064051) with: {'learning_rate': 0.15, 'max_depth': 1, 'n_estimators': 150}
135. 0.804252 (0.066082) with: {'learning_rate': 0.15, 'max_depth': 1, 'n_estimators': 200}
136. 0.873263 (0.037228) with: {'learning_rate': 0.15, 'max_depth': 3, 'n_estimators': 50}
137. 0.876110 (0.038150) with: {'learning_rate': 0.15, 'max_depth': 3, 'n_estimators': 100}
138. 0.876937 (0.036679) with: {'learning_rate': 0.15, 'max_depth': 3, 'n_estimators': 150}
139. 0.877158 (0.036059) with: {'learning_rate': 0.15, 'max_depth': 3, 'n_estimators': 200}
140. 0.866913 (0.033984) with: {'learning_rate': 0.15, 'max_depth': 5, 'n_estimators': 50}
141. 0.865987 (0.034375) with: {'learning_rate': 0.15, 'max_depth': 5, 'n_estimators': 100}
142. 0.865887 (0.034338) with: {'learning_rate': 0.15, 'max_depth': 5, 'n_estimators': 150}
143. 0.865612 (0.034281) with: {'learning_rate': 0.15, 'max_depth': 5, 'n_estimators': 200}
144. 0.855167 (0.023013) with: {'learning_rate': 0.15, 'max_depth': 7, 'n_estimators': 50}
145. 0.854927 (0.022918) with: {'learning_rate': 0.15, 'max_depth': 7, 'n_estimators': 100}
146. 0.854869 (0.022988) with: {'learning_rate': 0.15, 'max_depth': 7, 'n_estimators': 150}
147. 0.854869 (0.022989) with: {'learning_rate': 0.15, 'max_depth': 7, 'n_estimators': 200}
148. 0.844406 (0.031283) with: {'learning_rate': 0.15, 'max_depth': 9, 'n_estimators': 50}
149. 0.844863 (0.031062) with: {'learning_rate': 0.15, 'max_depth': 9, 'n_estimators': 100}
150. 0.844860 (0.031057) with: {'learning_rate': 0.15, 'max_depth': 9, 'n_estimators': 150}
151. 0.844860 (0.031057) with: {'learning_rate': 0.15, 'max_depth': 9, 'n_estimators': 200}
152. 0.841634 (0.027276) with: {'learning_rate': 0.15, 'max_depth': 11, 'n_estimators': 50}
153. 0.842250 (0.027120) with: {'learning_rate': 0.15, 'max_depth': 11, 'n_estimators': 100}
154. 0.842250 (0.027120) with: {'learning_rate': 0.15, 'max_depth': 11, 'n_estimators': 150}
155. 0.842250 (0.027120) with: {'learning_rate': 0.15, 'max_depth': 11, 'n_estimators': 200}
156. 0.831977 (0.045021) with: {'learning_rate': 0.15, 'max_depth': 13, 'n_estimators': 50}
157. 0.832695 (0.044631) with: {'learning_rate': 0.15, 'max_depth': 13, 'n_estimators': 100}
158. 0.832695 (0.044631) with: {'learning_rate': 0.15, 'max_depth': 13, 'n_estimators': 150}
159. 0.832695 (0.044631) with: {'learning_rate': 0.15, 'max_depth': 13, 'n_estimators': 200}
160. 0.834018 (0.038130) with: {'learning_rate': 0.15, 'max_depth': 15, 'n_estimators': 50}
161. 0.834701 (0.037810) with: {'learning_rate': 0.15, 'max_depth': 15, 'n_estimators': 100}
162. 0.834701 (0.037809) with: {'learning_rate': 0.15, 'max_depth': 15, 'n_estimators': 150}
163. 0.834701 (0.037809) with: {'learning_rate': 0.15, 'max_depth': 15, 'n_estimators': 200}
164. 0.792071 (0.063119) with: {'learning_rate': 0.18, 'max_depth': 1, 'n_estimators': 50}
165. 0.799122 (0.071840) with: {'learning_rate': 0.18, 'max_depth': 1, 'n_estimators': 100}
166. 0.799956 (0.073676) with: {'learning_rate': 0.18, 'max_depth': 1, 'n_estimators': 150}
167. 0.800800 (0.072044) with: {'learning_rate': 0.18, 'max_depth': 1, 'n_estimators': 200}
168. 0.862375 (0.033146) with: {'learning_rate': 0.18, 'max_depth': 3, 'n_estimators': 50}
169. 0.861233 (0.039972) with: {'learning_rate': 0.18, 'max_depth': 3, 'n_estimators': 100}
170. 0.859582 (0.042319) with: {'learning_rate': 0.18, 'max_depth': 3, 'n_estimators': 150}
171. 0.859903 (0.042120) with: {'learning_rate': 0.18, 'max_depth': 3, 'n_estimators': 200}
172. 0.860906 (0.038278) with: {'learning_rate': 0.18, 'max_depth': 5, 'n_estimators': 50}
173. 0.860003 (0.039017) with: {'learning_rate': 0.18, 'max_depth': 5, 'n_estimators': 100}
174. 0.859676 (0.039497) with: {'learning_rate': 0.18, 'max_depth': 5, 'n_estimators': 150}
175. 0.859539 (0.039609) with: {'learning_rate': 0.18, 'max_depth': 5, 'n_estimators': 200}
176. 0.859172 (0.030006) with: {'learning_rate': 0.18, 'max_depth': 7, 'n_estimators': 50}
177. 0.859255 (0.030341) with: {'learning_rate': 0.18, 'max_depth': 7, 'n_estimators': 100}
178. 0.859227 (0.030337) with: {'learning_rate': 0.18, 'max_depth': 7, 'n_estimators': 150}
179. 0.859227 (0.030337) with: {'learning_rate': 0.18, 'max_depth': 7, 'n_estimators': 200}
180. 0.846028 (0.030136) with: {'learning_rate': 0.18, 'max_depth': 9, 'n_estimators': 50}
181. 0.846116 (0.030054) with: {'learning_rate': 0.18, 'max_depth': 9, 'n_estimators': 100}
182. 0.846116 (0.030054) with: {'learning_rate': 0.18, 'max_depth': 9, 'n_estimators': 150}
183. 0.846116 (0.030054) with: {'learning_rate': 0.18, 'max_depth': 9, 'n_estimators': 200}
184. 0.835031 (0.045618) with: {'learning_rate': 0.18, 'max_depth': 11, 'n_estimators': 50}
185. 0.835256 (0.045504) with: {'learning_rate': 0.18, 'max_depth': 11, 'n_estimators': 100}
186. 0.835256 (0.045504) with: {'learning_rate': 0.18, 'max_depth': 11, 'n_estimators': 150}
187. 0.835256 (0.045504) with: {'learning_rate': 0.18, 'max_depth': 11, 'n_estimators': 200}
188. 0.839579 (0.037195) with: {'learning_rate': 0.18, 'max_depth': 13, 'n_estimators': 50}
189. 0.839839 (0.036966) with: {'learning_rate': 0.18, 'max_depth': 13, 'n_estimators': 100}
190. 0.839839 (0.036966) with: {'learning_rate': 0.18, 'max_depth': 13, 'n_estimators': 150}
191. 0.839839 (0.036966) with: {'learning_rate': 0.18, 'max_depth': 13, 'n_estimators': 200}
192. 0.834138 (0.042687) with: {'learning_rate': 0.18, 'max_depth': 15, 'n_estimators': 50}
193. 0.834406 (0.042569) with: {'learning_rate': 0.18, 'max_depth': 15, 'n_estimators': 100}
194. 0.834406 (0.042569) with: {'learning_rate': 0.18, 'max_depth': 15, 'n_estimators': 150}
195. 0.834406 (0.042569) with: {'learning_rate': 0.18, 'max_depth': 15, 'n_estimators': 200}
196. 0.791549 (0.066137) with: {'learning_rate': 0.21, 'max_depth': 1, 'n_estimators': 50}
197. 0.799056 (0.069836) with: {'learning_rate': 0.21, 'max_depth': 1, 'n_estimators': 100}
198. 0.799127 (0.072385) with: {'learning_rate': 0.21, 'max_depth': 1, 'n_estimators': 150}
199. 0.798508 (0.071937) with: {'learning_rate': 0.21, 'max_depth': 1, 'n_estimators': 200}
200. 0.872043 (0.033671) with: {'learning_rate': 0.21, 'max_depth': 3, 'n_estimators': 50}
201. 0.874572 (0.031613) with: {'learning_rate': 0.21, 'max_depth': 3, 'n_estimators': 100}
202. 0.873857 (0.031410) with: {'learning_rate': 0.21, 'max_depth': 3, 'n_estimators': 150}
203. 0.873438 (0.029881) with: {'learning_rate': 0.21, 'max_depth': 3, 'n_estimators': 200}
204. 0.860836 (0.038659) with: {'learning_rate': 0.21, 'max_depth': 5, 'n_estimators': 50}
205. 0.859716 (0.038468) with: {'learning_rate': 0.21, 'max_depth': 5, 'n_estimators': 100}
206. 0.859700 (0.038961) with: {'learning_rate': 0.21, 'max_depth': 5, 'n_estimators': 150}
207. 0.859774 (0.039022) with: {'learning_rate': 0.21, 'max_depth': 5, 'n_estimators': 200}
208. 0.850274 (0.038069) with: {'learning_rate': 0.21, 'max_depth': 7, 'n_estimators': 50}
209. 0.850067 (0.038088) with: {'learning_rate': 0.21, 'max_depth': 7, 'n_estimators': 100}
210. 0.850058 (0.038076) with: {'learning_rate': 0.21, 'max_depth': 7, 'n_estimators': 150}
211. 0.850058 (0.038076) with: {'learning_rate': 0.21, 'max_depth': 7, 'n_estimators': 200}
212. 0.836878 (0.047811) with: {'learning_rate': 0.21, 'max_depth': 9, 'n_estimators': 50}
213. 0.836854 (0.047828) with: {'learning_rate': 0.21, 'max_depth': 9, 'n_estimators': 100}
214. 0.836854 (0.047828) with: {'learning_rate': 0.21, 'max_depth': 9, 'n_estimators': 150}
215. 0.836854 (0.047828) with: {'learning_rate': 0.21, 'max_depth': 9, 'n_estimators': 200}
216. 0.832230 (0.054081) with: {'learning_rate': 0.21, 'max_depth': 11, 'n_estimators': 50}
217. 0.832294 (0.054084) with: {'learning_rate': 0.21, 'max_depth': 11, 'n_estimators': 100}
218. 0.832294 (0.054084) with: {'learning_rate': 0.21, 'max_depth': 11, 'n_estimators': 150}
219. 0.832294 (0.054084) with: {'learning_rate': 0.21, 'max_depth': 11, 'n_estimators': 200}
220. 0.828600 (0.053761) with: {'learning_rate': 0.21, 'max_depth': 13, 'n_estimators': 50}
221. 0.828676 (0.053745) with: {'learning_rate': 0.21, 'max_depth': 13, 'n_estimators': 100}
222. 0.828676 (0.053745) with: {'learning_rate': 0.21, 'max_depth': 13, 'n_estimators': 150}
223. 0.828676 (0.053745) with: {'learning_rate': 0.21, 'max_depth': 13, 'n_estimators': 200}
224. 0.835965 (0.043150) with: {'learning_rate': 0.21, 'max_depth': 15, 'n_estimators': 50}
225. 0.836031 (0.043121) with: {'learning_rate': 0.21, 'max_depth': 15, 'n_estimators': 100}
226. 0.836031 (0.043121) with: {'learning_rate': 0.21, 'max_depth': 15, 'n_estimators': 150}
227. 0.836031 (0.043121) with: {'learning_rate': 0.21, 'max_depth': 15, 'n_estimators': 200}
228. 0.795481 (0.067871) with: {'learning_rate': 0.24, 'max_depth': 1, 'n_estimators': 50}
229. 0.801605 (0.071016) with: {'learning_rate': 0.24, 'max_depth': 1, 'n_estimators': 100}
230. 0.800496 (0.071460) with: {'learning_rate': 0.24, 'max_depth': 1, 'n_estimators': 150}
231. 0.797624 (0.071779) with: {'learning_rate': 0.24, 'max_depth': 1, 'n_estimators': 200}
232. 0.874398 (0.045566) with: {'learning_rate': 0.24, 'max_depth': 3, 'n_estimators': 50}
233. 0.874511 (0.044248) with: {'learning_rate': 0.24, 'max_depth': 3, 'n_estimators': 100}
234. 0.872990 (0.044873) with: {'learning_rate': 0.24, 'max_depth': 3, 'n_estimators': 150}
235. 0.872426 (0.045030) with: {'learning_rate': 0.24, 'max_depth': 3, 'n_estimators': 200}
236. 0.864891 (0.035698) with: {'learning_rate': 0.24, 'max_depth': 5, 'n_estimators': 50}
237. 0.864877 (0.036296) with: {'learning_rate': 0.24, 'max_depth': 5, 'n_estimators': 100}
238. 0.864924 (0.036331) with: {'learning_rate': 0.24, 'max_depth': 5, 'n_estimators': 150}
239. 0.864914 (0.036352) with: {'learning_rate': 0.24, 'max_depth': 5, 'n_estimators': 200}
240. 0.842421 (0.037213) with: {'learning_rate': 0.24, 'max_depth': 7, 'n_estimators': 50}
241. 0.842429 (0.037197) with: {'learning_rate': 0.24, 'max_depth': 7, 'n_estimators': 100}
242. 0.842429 (0.037197) with: {'learning_rate': 0.24, 'max_depth': 7, 'n_estimators': 150}
243. 0.842429 (0.037197) with: {'learning_rate': 0.24, 'max_depth': 7, 'n_estimators': 200}
244. 0.837901 (0.040525) with: {'learning_rate': 0.24, 'max_depth': 9, 'n_estimators': 50}
245. 0.837940 (0.040483) with: {'learning_rate': 0.24, 'max_depth': 9, 'n_estimators': 100}
246. 0.837940 (0.040483) with: {'learning_rate': 0.24, 'max_depth': 9, 'n_estimators': 150}
247. 0.837940 (0.040483) with: {'learning_rate': 0.24, 'max_depth': 9, 'n_estimators': 200}
248. 0.840851 (0.034598) with: {'learning_rate': 0.24, 'max_depth': 11, 'n_estimators': 50}
249. 0.840865 (0.034607) with: {'learning_rate': 0.24, 'max_depth': 11, 'n_estimators': 100}
250. 0.840865 (0.034607) with: {'learning_rate': 0.24, 'max_depth': 11, 'n_estimators': 150}
251. 0.840865 (0.034607) with: {'learning_rate': 0.24, 'max_depth': 11, 'n_estimators': 200}
252. 0.836298 (0.042239) with: {'learning_rate': 0.24, 'max_depth': 13, 'n_estimators': 50}
253. 0.836310 (0.042240) with: {'learning_rate': 0.24, 'max_depth': 13, 'n_estimators': 100}
254. 0.836310 (0.042240) with: {'learning_rate': 0.24, 'max_depth': 13, 'n_estimators': 150}
255. 0.836310 (0.042240) with: {'learning_rate': 0.24, 'max_depth': 13, 'n_estimators': 200}
256. 0.839400 (0.036339) with: {'learning_rate': 0.24, 'max_depth': 15, 'n_estimators': 50}
257. 0.839409 (0.036336) with: {'learning_rate': 0.24, 'max_depth': 15, 'n_estimators': 100}
258. 0.839409 (0.036336) with: {'learning_rate': 0.24, 'max_depth': 15, 'n_estimators': 150}
259. 0.839409 (0.036336) with: {'learning_rate': 0.24, 'max_depth': 15, 'n_estimators': 200}
260. 0.800111 (0.064232) with: {'learning_rate': 0.27, 'max_depth': 1, 'n_estimators': 50}
261. 0.802720 (0.064531) with: {'learning_rate': 0.27, 'max_depth': 1, 'n_estimators': 100}
262. 0.801777 (0.063193) with: {'learning_rate': 0.27, 'max_depth': 1, 'n_estimators': 150}
263. 0.800700 (0.063971) with: {'learning_rate': 0.27, 'max_depth': 1, 'n_estimators': 200}
264. 0.861053 (0.043753) with: {'learning_rate': 0.27, 'max_depth': 3, 'n_estimators': 50}
265. 0.864884 (0.043096) with: {'learning_rate': 0.27, 'max_depth': 3, 'n_estimators': 100}
266. 0.864313 (0.043066) with: {'learning_rate': 0.27, 'max_depth': 3, 'n_estimators': 150}
267. 0.864089 (0.043224) with: {'learning_rate': 0.27, 'max_depth': 3, 'n_estimators': 200}
268. 0.858039 (0.040074) with: {'learning_rate': 0.27, 'max_depth': 5, 'n_estimators': 50}
269. 0.857603 (0.039677) with: {'learning_rate': 0.27, 'max_depth': 5, 'n_estimators': 100}
270. 0.857465 (0.039709) with: {'learning_rate': 0.27, 'max_depth': 5, 'n_estimators': 150}
271. 0.857458 (0.039712) with: {'learning_rate': 0.27, 'max_depth': 5, 'n_estimators': 200}
272. 0.850983 (0.028739) with: {'learning_rate': 0.27, 'max_depth': 7, 'n_estimators': 50}
273. 0.850913 (0.029035) with: {'learning_rate': 0.27, 'max_depth': 7, 'n_estimators': 100}
274. 0.850913 (0.029035) with: {'learning_rate': 0.27, 'max_depth': 7, 'n_estimators': 150}
275. 0.850913 (0.029035) with: {'learning_rate': 0.27, 'max_depth': 7, 'n_estimators': 200}
276. 0.838340 (0.046207) with: {'learning_rate': 0.27, 'max_depth': 9, 'n_estimators': 50}
277. 0.838347 (0.046212) with: {'learning_rate': 0.27, 'max_depth': 9, 'n_estimators': 100}
278. 0.838347 (0.046212) with: {'learning_rate': 0.27, 'max_depth': 9, 'n_estimators': 150}
279. 0.838347 (0.046212) with: {'learning_rate': 0.27, 'max_depth': 9, 'n_estimators': 200}
280. 0.839129 (0.042315) with: {'learning_rate': 0.27, 'max_depth': 11, 'n_estimators': 50}
281. 0.839128 (0.042315) with: {'learning_rate': 0.27, 'max_depth': 11, 'n_estimators': 100}
282. 0.839128 (0.042315) with: {'learning_rate': 0.27, 'max_depth': 11, 'n_estimators': 150}
283. 0.839128 (0.042315) with: {'learning_rate': 0.27, 'max_depth': 11, 'n_estimators': 200}
284. 0.831859 (0.047889) with: {'learning_rate': 0.27, 'max_depth': 13, 'n_estimators': 50}
285. 0.831858 (0.047888) with: {'learning_rate': 0.27, 'max_depth': 13, 'n_estimators': 100}
286. 0.831858 (0.047888) with: {'learning_rate': 0.27, 'max_depth': 13, 'n_estimators': 150}
287. 0.831858 (0.047888) with: {'learning_rate': 0.27, 'max_depth': 13, 'n_estimators': 200}
288. 0.835551 (0.037876) with: {'learning_rate': 0.27, 'max_depth': 15, 'n_estimators': 50}
289. 0.835550 (0.037876) with: {'learning_rate': 0.27, 'max_depth': 15, 'n_estimators': 100}
290. 0.835550 (0.037876) with: {'learning_rate': 0.27, 'max_depth': 15, 'n_estimators': 150}
291. 0.835550 (0.037876) with: {'learning_rate': 0.27, 'max_depth': 15, 'n_estimators': 200}
292. 0.796646 (0.068806) with: {'learning_rate': 0.3, 'max_depth': 1, 'n_estimators': 50}
293. 0.798677 (0.069044) with: {'learning_rate': 0.3, 'max_depth': 1, 'n_estimators': 100}
294. 0.798088 (0.068661) with: {'learning_rate': 0.3, 'max_depth': 1, 'n_estimators': 150}
295. 0.795781 (0.067476) with: {'learning_rate': 0.3, 'max_depth': 1, 'n_estimators': 200}
296. 0.869378 (0.040670) with: {'learning_rate': 0.3, 'max_depth': 3, 'n_estimators': 50}
297. 0.869182 (0.039476) with: {'learning_rate': 0.3, 'max_depth': 3, 'n_estimators': 100}
298. 0.869342 (0.038240) with: {'learning_rate': 0.3, 'max_depth': 3, 'n_estimators': 150}
299. 0.868400 (0.038308) with: {'learning_rate': 0.3, 'max_depth': 3, 'n_estimators': 200}
300. 0.868980 (0.030734) with: {'learning_rate': 0.3, 'max_depth': 5, 'n_estimators': 50}
301. 0.868601 (0.031693) with: {'learning_rate': 0.3, 'max_depth': 5, 'n_estimators': 100}
302. 0.868620 (0.031606) with: {'learning_rate': 0.3, 'max_depth': 5, 'n_estimators': 150}
303. 0.868620 (0.031606) with: {'learning_rate': 0.3, 'max_depth': 5, 'n_estimators': 200}
304. 0.859642 (0.026923) with: {'learning_rate': 0.3, 'max_depth': 7, 'n_estimators': 50}
305. 0.859655 (0.026917) with: {'learning_rate': 0.3, 'max_depth': 7, 'n_estimators': 100}
306. 0.859655 (0.026917) with: {'learning_rate': 0.3, 'max_depth': 7, 'n_estimators': 150}
307. 0.859655 (0.026917) with: {'learning_rate': 0.3, 'max_depth': 7, 'n_estimators': 200}
308. 0.843922 (0.039863) with: {'learning_rate': 0.3, 'max_depth': 9, 'n_estimators': 50}
309. 0.843921 (0.039864) with: {'learning_rate': 0.3, 'max_depth': 9, 'n_estimators': 100}
310. 0.843921 (0.039864) with: {'learning_rate': 0.3, 'max_depth': 9, 'n_estimators': 150}
311. 0.843921 (0.039864) with: {'learning_rate': 0.3, 'max_depth': 9, 'n_estimators': 200}
312. 0.836648 (0.043075) with: {'learning_rate': 0.3, 'max_depth': 11, 'n_estimators': 50}
313. 0.836648 (0.043075) with: {'learning_rate': 0.3, 'max_depth': 11, 'n_estimators': 100}
314. 0.836648 (0.043075) with: {'learning_rate': 0.3, 'max_depth': 11, 'n_estimators': 150}
315. 0.836648 (0.043075) with: {'learning_rate': 0.3, 'max_depth': 11, 'n_estimators': 200}
316. 0.833262 (0.043352) with: {'learning_rate': 0.3, 'max_depth': 13, 'n_estimators': 50}
317. 0.833262 (0.043352) with: {'learning_rate': 0.3, 'max_depth': 13, 'n_estimators': 100}
318. 0.833262 (0.043352) with: {'learning_rate': 0.3, 'max_depth': 13, 'n_estimators': 150}
319. 0.833262 (0.043352) with: {'learning_rate': 0.3, 'max_depth': 13, 'n_estimators': 200}
320. 0.828890 (0.049491) with: {'learning_rate': 0.3, 'max_depth': 15, 'n_estimators': 50}
321. 0.828890 (0.049491) with: {'learning_rate': 0.3, 'max_depth': 15, 'n_estimators': 100}
322. 0.828890 (0.049491) with: {'learning_rate': 0.3, 'max_depth': 15, 'n_estimators': 150}
323. 0.828890 (0.049491) with: {'learning_rate': 0.3, 'max_depth': 15, 'n_estimators': 200}

 

相关文章
|
24天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
67 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
24天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
67 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 算法
青否数字人声音克隆算法升级,16个超真实直播声音模型免费送!
青否数字人的声音克隆算法全面升级,能够完美克隆真人的音调、语速、情感和呼吸。提供16种超真实的直播声音模型,支持3大AI直播类型和6大核心AIGC技术,60秒快速开播,助力商家轻松赚钱。AI讲品、互动和售卖功能强大,支持多平台直播,确保每场直播话术不重复,智能互动和真实感十足。新手小白也能轻松上手,有效规避违规风险。
|
1月前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
2月前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
8天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
5天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
3天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
9天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
21天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。