全网最硬核 Java 新内存模型解析与实验 - 3. 硬核理解内存屏障(CPU+编译器)(上)

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介: 全网最硬核 Java 新内存模型解析与实验 - 3. 硬核理解内存屏障(CPU+编译器)(上)
个人创作公约:本人声明创作的所有文章皆为自己原创,如果有参考任何文章的地方,会标注出来,如果有疏漏,欢迎大家批判。如果大家发现网上有抄袭本文章的,欢迎举报,并且积极向这个 github 仓库 提交 issue,谢谢支持~本篇文章参考了大量文章,文档以及论文,但是这块东西真的很繁杂,我的水平有限,可能理解的也不到位,如有异议欢迎留言提出。 本系列会不断更新,结合大家的问题以及这里的错误和疏漏,欢迎大家留言如果你喜欢单篇版,请访问: 全网最硬核 Java 新内存模型解析与实验单篇版(不断更新QA中)如果你喜欢这个拆分的版本,这里是目录:


JMM 相关文档:


内存屏障,CPU 与内存模型相关:


x86 CPU 相关资料:


ARM CPU 相关资料:


各种一致性的理解:


Aleskey 大神的 JMM 讲解:


相信很多 Java 开发,都使用了 Java 的各种并发同步机制,例如 volatile,synchronized 以及 Lock 等等。也有很多人读过 JSR 第十七章 Threads and Locks(地址:https://docs.oracle.com/javase/specs/jls/se17/html/jls-17.html),其中包括同步、Wait/Notify、Sleep & Yield 以及内存模型等等做了很多规范讲解。但是也相信大多数人和我一样,第一次读的时候,感觉就是在看热闹,看完了只是知道他是这么规定的,但是为啥要这么规定,不这么规定会怎么样,并没有很清晰的认识。同时,结合 Hotspot 的实现,以及针对 Hotspot 的源码的解读,我们甚至还会发现,由于 javac 的静态代码编译优化以及 C1、C2 的 JIT 编译优化,导致最后代码的表现与我们的从规范上理解出代码可能的表现是不太一致的。并且,这种不一致,导致我们在学习 Java 内存模型(JMM,Java Memory Model),理解 Java 内存模型设计的时候,如果想通过实际的代码去试,结果是与自己本来可能正确的理解被带偏了,导致误解。

我本人也是不断地尝试理解 Java 内存模型,重读 JLS 以及各路大神的分析。这个系列,会梳理我个人在阅读这些规范以及分析还有通过 jcstress 做的一些实验而得出的一些理解,希望对于大家对 Java 9 之后的 Java 内存模型以及 API 抽象的理解有所帮助。但是,还是强调一点,内存模型的设计,出发点是让大家可以不用关心底层而抽象出来的一些设计,涉及的东西很多,我的水平有限,可能理解的也不到位,我会尽量把每一个论点的论据以及参考都摆出来,请大家不要完全相信这里的所有观点,如果有任何异议欢迎带着具体的实例反驳并留言


5. 内存屏障


5.1. 为何需要内存屏障

内存屏障(Memory Barrier),也有叫内存栅栏(Memory Fence),还有的资料直接为了简便,就叫 membar,这些其实意思是一样的。内存屏障主要为了解决指令乱序带来了结果与预期不一致的问题,通过加入内存屏障防止指令乱序(或者称为重排序,reordering)。

那么为什么会有指令乱序呢?主要是因为 CPU 乱序(CPU乱序还包括 CPU 内存乱序以及 CPU 指令乱序)以及编译器乱序。内存屏障可以用于防止这些乱序。如果内存屏障对于编译器和 CPU 都生效,那么一般称为硬件内存屏障,如果只对编译器生效,那么一般被称为软件内存屏障。我们这里主要关注 CPU 带来的乱序,对于编译器的重排序我们会在最后简要介绍下。


5.2. CPU 内存乱序相关


我们从 CPU 高速缓存以及缓存一致性协议出发,开始分析为何 CPU 中会有乱序。我们这里假设一种简易的 CPU 模型请大家一定记住,实际的 CPU 要比这里列举的简易 CPU 模型复杂的多


5.2.1. 简易 CPU 模型 - CPU 高速缓存的出发点 - 减少 CPU Stall

我们在这里会看到,现代的 CPU 的很多设计,一切以减少 CPU Stall 出发。什么是 CPU Stall 呢?举一个简单的例子,假设 CPU 需要直接读取内存中的数据(忽略其他的结构,例如 CPU 缓存,总线与总线事件等等):


image.png


CPU 发出读取请求,在内存响应之前,CPU 需要一直等待,无法处理其他的事情。这一段 CPU 就是处于 Stall 状态。如果 CPU 一直直接从内存中读取,CPU 直接访问内存消耗时间很长,可能需要几百个指令周期,也就是每次访问都会有几百个指令周期内 CPU 处于 Stall 状态什么也干不了,这样效率会很低。一般需要引入若干个高速缓存(Cache)来减少 Stall:高速缓存即与处理器紧挨着的小型存储器,位于处理器和内存之间。

我们这里不关心多级高速缓存,以及是否存在多个 CPU 共用某一缓存的情况,我们就简单认为是下面这个架构:


image.png


当需要读取一个地址的值时,访问高速缓存看是否存在:存在代表命中(hit),直接读取。不存在被称为缺失(miss)。同样的,如果需要写一个值到一个地址,这个地址在缓存中存在也就不需要访问内存了。大部分程序都表现出较高的局部性(locality):

  • 如果处理器读或写一个内存地址,那么它很可能很快还会读或写同一个地址
  • 如果处理器读或写一个内存地址,那么它很可能很快还会读或写附近的地址

针对局部性,高速缓存一般会一次操作不止一个字,而是一组临近的字,称为缓存行

但是呢,由于告诉缓存的存在,就给更新内存带来了麻烦:当一个 CPU 需要更新一块缓存行对应内存的时候,它需要将其他 CPU 缓存中这块内存的缓存行也置为失效。为了维持每个 CPU 的缓存数据一致性,引入了缓存一致性协议(Cache Coherence Protocols)


5.2.2. 简易 CPU 模型 - 一种简单的缓存一致性协议(实际的 CPU 用的要比这个复杂) - MESI

现代的缓存一致性的协议以及算法非常复杂,缓存行可能会有数十种不同的状态。这里我们并不需要研究这种复杂的算法,我们这里引入一个最经典最简单的缓存一致性协议即 4 状态 MESI 协议(再次强调,实际的 CPU 用的协议要比这个复杂,MESI 其实本身有些问题解决不了),MESI 其实指的就是缓存行的四个状态:

  • Modified:缓存行被修改,最终一定会被写回入主存,在此之前其他处理器不能再缓存这个缓存行。
  • Exclusive:缓存行还未被修改,但是其他的处理器不能将这个缓存行载入缓存
  • Shared:缓存行未被修改,其他处理器可以加载这个缓存行到缓存
  • Invalid:缓存行中没有有意义的数据

根据我们前面的 CPU 缓存结构图中所示,假设所有 CPU 都共用在同一个总线上,则会有如下这些信息在总线上发送:

  1. Read:这个事件包含要读取的缓存行的物理地址。
  2. Read Response:包含前面的读取事件请求的数据,数据来源可能是内存或者是其他高速缓存,例如,如果请求的数据在其他缓存处于 modified 状态的话,那么必须从这个缓存读取缓存行数据作为 Read Response
  3. Invalidate:这个事件包含要过期掉的缓存行的物理地址。其他的高速缓存必须移除这个缓存行并且响应 Invalidate Acknowledge 消息。
  4. Invalidate Acknowledge:收到 Invalidate 消息移除掉对应的缓存行之后,回复 Invalidate Acknowledge 消息。
  5. Read Invalidate:是 Read 消息还有 Invalidate 消息的组合,包含要读取的缓存行的物理地址。既读取这个缓存行并且需要 Read Response 消息响应,同时发给其他的高速缓存,移除这个缓存行并且响应 Invalidate Acknowledge 消息。
  6. Writeback:这个消息包含要更新的内存地址以及数据。同时,这个消息也允许状态为 modified 的缓存行被剔除,以给其他数据腾出空间。

缓存行状态转移与事件的关系:


image.png


这里只是列出这个图,我们不会深入去讲的,因为 MESI 是一个非常精简的协议,具体实现的时候会有很多额外的问题 MESI 无法解决,如果详细的去讲,会把读者绕进去,读者会思考在某个极限情况下这个协议要怎么做才能保证正确,但是 MESI 实际上解决不了这些。在实际的实现中,CPU 一致性协议要比 MESI 复杂的多得多,但是一般都是基于 MESI 扩展的

举一个简单的 MESI 的例子:


image.png


1.CPU A 发送 Read 从地址 a 读取数据,收到 Read Response 将数据存入他的高速缓存并将对应的缓存行置为 Exclusive

2.CPU B 发送 Read 从地址 a 读取数据,CPU A 检测到地址冲突,CPU A 响应 Read Response 返回缓存中包含 a 地址的缓存行数据,之后,地址 a 的数据对应的缓存行被 A 和 B 以 Shared 状态装入缓存


image.png


3.CPU B 对于 a 马上要进行写操作,发送 Invalidate,等待 CPU A 的 Invalidate Acknowledge 响应之后,状态修改为 Exclusive。CPU A 收到 Invalidate 之后,将 a 所在的缓存行状态置为 Invalid 失效

4.CPU B 修改数据存储到包含地址 a 的缓存行上,缓存行状态置为 modified

5.这时候 CPU A 又需要 a 数据,发送 Read 从地址 a 读取数据,CPU B 检测到地址冲突,CPU B 响应 Read Response 返回缓存中包含 a 地址的缓存行数据,之后,地址 a 的数据对应的缓存行被 A 和 B 以 Shared 状态装入缓存

我们这里可以看到,MESI 协议中,发送 Invalidate 消息需要当前 CPU 等待其他 CPU 的 Invalidate Acknowledge,也就是这里有 CPU Stall。为了避免这个 Stall,引入了 Store Buffer


5.2.3. 简易 CPU 模型 - 避免等待 Invalidate Response 的 Stall - Store Buffer

为了避免这种 Stall,在 CPU 与 CPU 缓存之间添加 Store Buffer,如下图所示:


image.png


有了 Store Buffer,CPU 在发送 Invalidate 消息的时候,不用等待 Invalidate Acknowledge 的返回,将修改的数据直接放入 Store Buffer。如果收到了所有的 Invalidate Acknowledge 再从 Store Buffer 放入 CPU 的高速缓存的对应缓存行中。但是加入的这个 Store Buffer 又带来了新的问题:

假设有两个变量 a 和 b,不会处于同一个缓存行,初始都是 0,a 现在位于 CPU A 的缓存行中,b 现在位于 CPU B 的缓存行中:

假设 CPU B 要执行下面的代码:


image.png


我们肯定是期望最后 b 会等于 2 的。但是真的会如我们所愿么?我们来详细看下下面这个运行步骤:


image.png


1.CPU B 执行 a = 1:

(1)由于 CPU B 缓存中没有 a,并且要修改,所以发布 Read Invalidate 消息(因为是要先把包含 a 的整个缓存行读取后才能更新,所以发的是 Read Invalidate,而不只是 Invalidate)。

(2)CPU B 将 a 的修改(a=1)放入 Storage Buffer

(3)CPU A 收到 Read Invalidate 消息,将 a 所在的缓存行标记为 Invalid 并清除出缓存,并响应 Read Response(a=0) 和 Invalidate Acknowlegde


image.png



相关文章
|
16天前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
45 2
|
20天前
|
Java
轻松上手Java字节码编辑:IDEA插件VisualClassBytes全方位解析
本插件VisualClassBytes可修改class字节码,包括class信息、字段信息、内部类,常量池和方法等。
71 6
|
27天前
|
存储 Java 编译器
Java内存模型(JMM)深度解析####
本文深入探讨了Java内存模型(JMM)的工作原理,旨在帮助开发者理解多线程环境下并发编程的挑战与解决方案。通过剖析JVM如何管理线程间的数据可见性、原子性和有序性问题,本文将揭示synchronized关键字背后的机制,并介绍volatile关键字和final关键字在保证变量同步与不可变性方面的作用。同时,文章还将讨论现代Java并发工具类如java.util.concurrent包中的核心组件,以及它们如何简化高效并发程序的设计。无论你是初学者还是有经验的开发者,本文都将为你提供宝贵的见解,助你在Java并发编程领域更进一步。 ####
|
1月前
|
安全 Java 测试技术
🎉Java零基础:全面解析枚举的强大功能
【10月更文挑战第19天】本文收录于「滚雪球学Java」专栏,专业攻坚指数级提升,希望能够助你一臂之力,帮你早日登顶实现财富自由🚀;同时,欢迎大家关注&&收藏&&订阅!持续更新中,up!up!up!!
108 60
|
3天前
|
Java 数据库连接 开发者
Java中的异常处理机制:深入解析与最佳实践####
本文旨在为Java开发者提供一份关于异常处理机制的全面指南,从基础概念到高级技巧,涵盖try-catch结构、自定义异常、异常链分析以及最佳实践策略。不同于传统的摘要概述,本文将以一个实际项目案例为线索,逐步揭示如何高效地管理运行时错误,提升代码的健壮性和可维护性。通过对比常见误区与优化方案,读者将获得编写更加健壮Java应用程序的实用知识。 --- ####
|
12天前
|
Java 测试技术 API
Java 反射机制:深入解析与应用实践
《Java反射机制:深入解析与应用实践》全面解析Java反射API,探讨其内部运作原理、应用场景及最佳实践,帮助开发者掌握利用反射增强程序灵活性与可扩展性的技巧。
|
17天前
|
存储 算法 Java
Java Set深度解析:为何它能成为“无重复”的代名词?
Java的集合框架中,Set接口以其“无重复”特性著称。本文解析了Set的实现原理,包括HashSet和TreeSet的不同数据结构和算法,以及如何通过示例代码实现最佳实践。选择合适的Set实现类和正确实现自定义对象的hashCode()和equals()方法是关键。
25 4
|
21天前
|
缓存 算法 Java
本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制
在现代软件开发中,性能优化至关重要。本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制。通过调整垃圾回收器参数、优化堆大小与布局、使用对象池和缓存技术,开发者可显著提升应用性能和稳定性。
40 6
|
20天前
|
Java 编译器 数据库连接
Java中的异常处理机制深度解析####
本文深入探讨了Java编程语言中异常处理机制的核心原理、类型及其最佳实践,旨在帮助开发者更好地理解和应用这一关键特性。通过实例分析,揭示了try-catch-finally结构的重要性,以及如何利用自定义异常提升代码的健壮性和可读性。文章还讨论了异常处理在大型项目中的最佳实践,为提高软件质量提供指导。 ####
|
25天前
|
存储 设计模式 分布式计算
Java中的多线程编程:并发与并行的深度解析####
在当今软件开发领域,多线程编程已成为提升应用性能、响应速度及资源利用率的关键手段之一。本文将深入探讨Java平台上的多线程机制,从基础概念到高级应用,全面解析并发与并行编程的核心理念、实现方式及其在实际项目中的应用策略。不同于常规摘要的简洁概述,本文旨在通过详尽的技术剖析,为读者构建一个系统化的多线程知识框架,辅以生动实例,让抽象概念具体化,复杂问题简单化。 ####

推荐镜像

更多