算法概要

简介: 算法虐我千万遍,我待算法如初恋;IT人永远逃脱不了的算法

算法虐我千万遍,我待算法如初恋;IT人永远逃脱不了的算法

概念

算法是特定问题求解步骤的描述,在计算机中表现为指令的有限序列

算法是独立存在的一种解决问题的方法和思想

对于算法而言,实现的语言并不重要,重要的是思想

特性

  1. 输入: 算法具有0个或多个输入
  2. 输出: 算法至少有1个或多个输出
  3. 有穷性: 算法在有限的步骤之后会自动结束而不会无限循环,并且每一个步骤可以在可接受的时间内完成
  4. 确定性:算法中的每一步都有确定的含义,不会出现二义性
  5. 可行性:算法的每一步都是可行的,也就是说每一步都能够执行有限的次数完成

时间复杂度

定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数T(n)称为这一算法的“时间复杂性”

T(n) = O(f(n))

当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性”。

大O表示法

大O表示法被用来描述一个算法的性能或复杂度。大O表示法可以用来描述一个算法的最差情况,或者一个算法执行的耗时或占用空间(例如内存或磁盘占用)

假设一个算法的时间复杂度是 O(n),n在这里代表的意思就是数据的个数。

举个例子,如果你的代码用一个循环遍历 100 个元素,那么这个算法就是 O(n),n 为 100,所以这里的算法在执行时就要做 100 次工作

大O表示法就是将算法的所有步骤转换为代数项,然后排除不会对问题的整体复杂度产生较大影响的较低阶常数和系数,只关心复杂度最重要的部分

规律       Big-O
2             O(1)   --> 就是一个常数
2n + 10       O(n)   --> n 对整体结果会产生最大影响
5n^2         O(n^2) --> n^2 具有最大影响

O(log n),即对数复杂度(logarithmic complexity)。对数可以是ln(底数为e),log10,log2 或者以其它为底数,这无关紧要,它仍然是O(log n),正如O(2n^2) 和 O(100n^2) 都记为 O(n^2)。

示例

O(1)

O(1)表示该算法的执行时间(或执行时占用空间)总是为一个常量,不论输入的数据集是大是小

bool IsFirstElementNull(IList elements)
{
    return elements[0] == null;
}

O(N)

O(N)表示一个算法的性能会随着输入数据的大小变化而线性变化。下面的例子同时也表明了大O表示法其实是用来描述一个算法的最差情况的:在for循环中,一旦程序找到了输入数据中与第二个传入的string匹配时,程序就会提前退出,然而大O表示法却总是假定程序会运行到最差情况(在这个例子中,意味着大O会表示程序全部循环完成时的性能)

bool ContainsValue(IList elements, string value)
{
    foreach (var element in elements)
    {
        if (element == value) return true;
    }
    return false;
}

O(n²)

for循环嵌套的复杂度就是二次方的,因为你在一个线性操作里执行另外一个线性操作(或者说: n*n =n² )

如果嵌套层级不断深入的话,算法的性能将会变为O(N^3),O(N^4),以此类推

for (var outer = 0; outer < elements.Count; outer++)
    {
        for (var inner = 0; inner < elements.Count; inner++)
        {
            // Don't compare with self
            if (outer == inner) continue;
            if (elements[outer] == elements[inner]) return true;
        }
    }

O(2^N)

O(2^N)表示一个算法的性能将会随着输入数据的每次增加而增大两倍。O(2^N)的增长曲线是一条爆炸式增长曲线——开始时较为平滑,但数据增长后曲线增长非常陡峭。一个典型的O(2^N)方法就是裴波那契数列的递归计算实现

int Fibonacci(int number)
{
    if (number <= 1) return number;
    return Fibonacci(number - 2) + Fibonacci(number - 1);
}

(logn)

i=1;       
while (i<=n)
    i=i*2;

比较

O(1)<O(logn)<O(n)<O(nlogn)<O(n^2)<O(n^3)<O(2^n)<O(n!)<O(n^n)


image.png

目录
相关文章
|
安全 算法 JavaScript
MRP算法概要
一. 时间范围的确定: T1 T2 T3 T4   T2: 系统日期T3: 计划展望期的开始日期(通常情况下T2与T3为同一天)。T4: 计划展望期的结束日期。
2150 0
|
机器学习/深度学习 数据采集 编解码
数据挖掘算法概要(Python)
数据挖掘是通过对大量数据的清理及处理以发现信息,并应用于分类,推荐系统,预测等方面的过程。
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
148 68
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
1月前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15

热门文章

最新文章