算法概要

简介: 算法虐我千万遍,我待算法如初恋;IT人永远逃脱不了的算法

算法虐我千万遍,我待算法如初恋;IT人永远逃脱不了的算法

概念

算法是特定问题求解步骤的描述,在计算机中表现为指令的有限序列

算法是独立存在的一种解决问题的方法和思想

对于算法而言,实现的语言并不重要,重要的是思想

特性

  1. 输入: 算法具有0个或多个输入
  2. 输出: 算法至少有1个或多个输出
  3. 有穷性: 算法在有限的步骤之后会自动结束而不会无限循环,并且每一个步骤可以在可接受的时间内完成
  4. 确定性:算法中的每一步都有确定的含义,不会出现二义性
  5. 可行性:算法的每一步都是可行的,也就是说每一步都能够执行有限的次数完成

时间复杂度

定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数T(n)称为这一算法的“时间复杂性”

T(n) = O(f(n))

当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性”。

大O表示法

大O表示法被用来描述一个算法的性能或复杂度。大O表示法可以用来描述一个算法的最差情况,或者一个算法执行的耗时或占用空间(例如内存或磁盘占用)

假设一个算法的时间复杂度是 O(n),n在这里代表的意思就是数据的个数。

举个例子,如果你的代码用一个循环遍历 100 个元素,那么这个算法就是 O(n),n 为 100,所以这里的算法在执行时就要做 100 次工作

大O表示法就是将算法的所有步骤转换为代数项,然后排除不会对问题的整体复杂度产生较大影响的较低阶常数和系数,只关心复杂度最重要的部分

规律       Big-O
2             O(1)   --> 就是一个常数
2n + 10       O(n)   --> n 对整体结果会产生最大影响
5n^2         O(n^2) --> n^2 具有最大影响

O(log n),即对数复杂度(logarithmic complexity)。对数可以是ln(底数为e),log10,log2 或者以其它为底数,这无关紧要,它仍然是O(log n),正如O(2n^2) 和 O(100n^2) 都记为 O(n^2)。

示例

O(1)

O(1)表示该算法的执行时间(或执行时占用空间)总是为一个常量,不论输入的数据集是大是小

bool IsFirstElementNull(IList elements)
{
    return elements[0] == null;
}

O(N)

O(N)表示一个算法的性能会随着输入数据的大小变化而线性变化。下面的例子同时也表明了大O表示法其实是用来描述一个算法的最差情况的:在for循环中,一旦程序找到了输入数据中与第二个传入的string匹配时,程序就会提前退出,然而大O表示法却总是假定程序会运行到最差情况(在这个例子中,意味着大O会表示程序全部循环完成时的性能)

bool ContainsValue(IList elements, string value)
{
    foreach (var element in elements)
    {
        if (element == value) return true;
    }
    return false;
}

O(n²)

for循环嵌套的复杂度就是二次方的,因为你在一个线性操作里执行另外一个线性操作(或者说: n*n =n² )

如果嵌套层级不断深入的话,算法的性能将会变为O(N^3),O(N^4),以此类推

for (var outer = 0; outer < elements.Count; outer++)
    {
        for (var inner = 0; inner < elements.Count; inner++)
        {
            // Don't compare with self
            if (outer == inner) continue;
            if (elements[outer] == elements[inner]) return true;
        }
    }

O(2^N)

O(2^N)表示一个算法的性能将会随着输入数据的每次增加而增大两倍。O(2^N)的增长曲线是一条爆炸式增长曲线——开始时较为平滑,但数据增长后曲线增长非常陡峭。一个典型的O(2^N)方法就是裴波那契数列的递归计算实现

int Fibonacci(int number)
{
    if (number <= 1) return number;
    return Fibonacci(number - 2) + Fibonacci(number - 1);
}

(logn)

i=1;       
while (i<=n)
    i=i*2;

比较

O(1)<O(logn)<O(n)<O(nlogn)<O(n^2)<O(n^3)<O(2^n)<O(n!)<O(n^n)


image.png

目录
相关文章
|
安全 算法 JavaScript
MRP算法概要
一. 时间范围的确定: T1 T2 T3 T4   T2: 系统日期T3: 计划展望期的开始日期(通常情况下T2与T3为同一天)。T4: 计划展望期的结束日期。
2113 0
|
机器学习/深度学习 数据采集 编解码
数据挖掘算法概要(Python)
数据挖掘是通过对大量数据的清理及处理以发现信息,并应用于分类,推荐系统,预测等方面的过程。
|
24天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
9天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
10天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
11天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
10天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
10天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
27 3
|
21天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。