《机器学习与数据科学(基于R的统计学习方法)》——2.5 读取CSV文件

简介:

本节书摘来异步社区《机器学习与数据科学(基于R的统计学习方法)》一书中的第2章,第2.5节,作者:【美】Daniel D. Gutierrez(古铁雷斯),更多章节内容可以访问云栖社区“异步社区”公众号查看。

2.5 读取CSV文件

可能你遇到的最常见的数据文件类型是逗号分隔值(CSV)文件类型。这是因为CSV是数据科学社区的通用语言,并且很多软件应用导出的数据格式是CSV。同样地,大多数软件应用和环境(如R)能够读取CSV文件。如果你不熟悉一个CSV文件的样子,只要在诸如Windows记事本(Notepad)这样的工具中打开它即可。CSV文件的格式很简单:文件中的每一行代表了一个观测值,每一列代表一个变量(潜在的特征变量)。R能处理第一行包含一个变量名列表的情况,也能处理第一行丢失的情况(在这种情况下,R会任意分配变量名,你可以在之后重新命名变量)。

一旦你得到了CSV文件,第一步就是把它放进工作目录中。为了将CSV的内容读进内存中以便后续在R中使用,你可以用read.table()函数,这是R提供的把文件读入成为表格形式的一般方法,不单单适用于CSV格式。read.csv()的功能基本和read.table()相同,只不过它只能读取CSV格式,而这种格式通常是由Excel这样的电子表格应用导出的。不论使用哪个函数,文件都被读入数据框对象中。为了演示这部分内容,我们将读入前面的停车计时器数据集。

> SFParkingMeters <- read.csv("./data/SFParkingMeters.csv")```
成功将文件读入之后,你可以用两种方法让内容显示在RStudio中,一种是在Workspace窗格中单击数据框的名称SFParkingMeters;另一种在控制台中输入指令view(SFParketingMeters)。图2-2显示了你将看见的结果。你可以像在电子表格中那样浏览数据,不同的是,这里不允许编辑。我们注意到,这个数据集有29 253条观测值和116个变量。如果你只想看这个数据框的前6行,也可以使用head(SFParkingMeters)。
<div style="text-align: center"><img src="https://yqfile.alicdn.com/253085d8d6238b55826ac130d91693fdeae99074.png" width="" height="">
</div>

另一种有用的读入文件的方式是使用file.choose()函数,它可以嵌入到read.table()或者read.csv()中。这种读文件的方式会弹出一个提示框,提醒选择指向计算机中的哪个文件。

SFParkingMeters <- read.csv(file.choose())`

相关文章
|
21天前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
65 4
|
2月前
|
机器学习/深度学习 测试技术
阿里云入选Gartner数据科学和机器学习平台挑战者象限
Gartner® 正式发布了《数据科学与机器学习平台魔力象限》报告(Magic Quadrant™ for Data Science and Machine Learning Platforms),阿里云成为唯一一家入选该报告的中国厂商,被评为“挑战者”(Challengers)。
|
4天前
|
机器学习/深度学习 传感器 运维
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
27 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
|
21天前
|
机器学习/深度学习 算法 UED
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法。本文介绍 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,同时提供 Python 实现示例,强调其在确保项目性能和用户体验方面的关键作用。
28 6
|
23天前
|
机器学习/深度学习 数据采集 算法
机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用
医疗诊断是医学的核心,其准确性和效率至关重要。本文探讨了机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用。文章还讨论了Python在构建机器学习模型中的作用,面临的挑战及应对策略,并展望了未来的发展趋势。
79 1
|
29天前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
1月前
|
机器学习/深度学习 数据采集 数据处理
谷歌提出视觉记忆方法,让大模型训练数据更灵活
谷歌研究人员提出了一种名为“视觉记忆”的方法,结合了深度神经网络的表示能力和数据库的灵活性。该方法将图像分类任务分为图像相似性和搜索两部分,支持灵活添加和删除数据、可解释的决策机制以及大规模数据处理能力。实验结果显示,该方法在多个数据集上取得了优异的性能,如在ImageNet上实现88.5%的top-1准确率。尽管有依赖预训练模型等限制,但视觉记忆为深度学习提供了新的思路。
28 2
|
2月前
|
机器学习/深度学习 数据采集 数据挖掘
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
因果推断方法为特征工程提供了一个更深层次的框架,使我们能够区分真正的因果关系和简单的统计相关性。这种方法在需要理解干预效果的领域尤为重要,如经济学、医学和市场营销。
75 1
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
|
26天前
|
机器学习/深度学习 数据可视化 数据处理
掌握Python数据科学基础——从数据处理到机器学习
掌握Python数据科学基础——从数据处理到机器学习
39 0
|
2月前
|
机器学习/深度学习
如何用贝叶斯方法来解决机器学习中的分类问题?
【10月更文挑战第5天】如何用贝叶斯方法来解决机器学习中的分类问题?