Redis数据一致性实践

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: Redis数据一致性实践

为什么用redis



内存数据库,快;高并发下能有效降低数据库的压力。

但是这里是牺牲了数据强一致性


CAP理论



CAP理论,指的是在一个分布式系统中, Consistency(一致性)、 Availability(可用性)、Partition tolerance(分区容错性),三者不可得兼。

CAP理论作为分布式系统的基础理论,它描述的是一个分布式系统在以下三个特性中:


  • 一致性(Consistency)
  • 可用性(Availability)
  • 分区容错性(Partition tolerance)

分布式系统无法同时满足CAP,要么满足CA,要么CP,要么AP。


缓存和数据库之间一直性的方案



Cache Aside 策略(旁路缓存策略)


读策略


  • 从缓存读取数据
  • 命中返回
  • 没命中从数据库加载数据,并存缓存返回
    写策略
  • 先写库
  • 删缓存

为什么不先删除缓存?因为写库可能没有完成,删掉的缓存重新加载还是脏数据

Cache Aside 策略不保证数据一致性的,但是可以大大减少不一致性的数据。


延时双删


  • 删缓存
  • 更新数据库
  • 休眠
  • 再删缓存

休眠是为了更新库留的时间,可根据业务耗时合理设置。

为什么再删是为了防止写入的时候又脏数据加载到缓存了。


删除重试


主要解决问题时上面的删除缓存的时候出错的情况下脏数据还在,原理是在删除缓存失败的时候引入队列,进行异步删除。


碰到的一个问题



我的数据库被黑掉了, 但redis里面保存了些登录的数据;

这个时候我又初始化了个库,初始化的库用户肯定时没有的,这个时候我用之前的用户竟然发现也能登录进去。


看了下代码发现我登录的时候先查了登录信息的缓存。


思路


  1. 服务端启动把缓存的登录用户信息删了?
    单服务端可以,但是如果是集群就有问题了。
  2. 登录的时候删key
    那和裸db基本一致了
  3. 设置过期时间了
    发现是可行的,如果用户不存在到期后就获取不到用户信息,虽然能登录但是发不了信息,如果发不了信息可以发送个强制退出的命令。

登录流程大概如下


网络异常,图片无法展示
|

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
2月前
|
存储 缓存 NoSQL
深入理解Django与Redis的集成实践
深入理解Django与Redis的集成实践
81 0
|
7月前
|
存储 缓存 NoSQL
蚂蚁金服P7私藏的Redis原理与实践内部笔记
Redis 是完全开源免费的,是一个高性能的key-value类型的内存数据库。整个数据库统统加载在内存当中进行操作,定期通过异步操作把数据库数据flush到硬盘上进行保存。因为是纯内存操作,Redis的性能非常出色,每秒可以处理超过 10万次读写操作,是已知性能最快的Key-Value DB。
112 1
|
7月前
|
缓存 NoSQL 关系型数据库
亿级电商流量,高并发下Redis与MySQL的数据一致性如何保证
你们有多少人是被面试官问到过Redis和MySQL的数据一致性如何保证的? 你们是否考虑过在高并发场景下,Redis与MySQL的同步会有哪些问题?该如何解决? 本篇文章会带大家详细了解,让你知其然,知其所以然,吊打面试官。
521 0
亿级电商流量,高并发下Redis与MySQL的数据一致性如何保证
|
25天前
|
NoSQL Java 数据处理
基于Redis海量数据场景分布式ID架构实践
【11月更文挑战第30天】在现代分布式系统中,生成全局唯一的ID是一个常见且重要的需求。在微服务架构中,各个服务可能需要生成唯一标识符,如用户ID、订单ID等。传统的自增ID已经无法满足在集群环境下保持唯一性的要求,而分布式ID解决方案能够确保即使在多个实例间也能生成全局唯一的标识符。本文将深入探讨如何利用Redis实现分布式ID生成,并通过Java语言展示多个示例,同时分析每个实践方案的优缺点。
53 8
|
1月前
|
缓存 NoSQL Redis
Redis 缓存使用的实践
《Redis缓存最佳实践指南》涵盖缓存更新策略、缓存击穿防护、大key处理和性能优化。包括Cache Aside Pattern、Write Through、分布式锁、大key拆分和批量操作等技术,帮助你在项目中高效使用Redis缓存。
268 22
|
2月前
|
NoSQL 关系型数据库 MySQL
MySQL与Redis协同作战:百万级数据统计优化实践
【10月更文挑战第21天】 在处理大规模数据集时,传统的单体数据库解决方案往往力不从心。MySQL和Redis的组合提供了一种高效的解决方案,通过将数据库操作与高速缓存相结合,可以显著提升数据处理的性能。本文将分享一次实际的优化案例,探讨如何利用MySQL和Redis共同实现百万级数据统计的优化。
114 9
|
3月前
|
NoSQL 关系型数据库 MySQL
当Redis与MySQL数据一致性校验中Redis数据量小于MySQL时的全量查询处理方法
保持Redis和MySQL之间的数据一致性是一个需要细致规划和持续维护的过程。通过全量数据同步、建立增量更新机制,以及定期执行数据一致性校验,可以有效地管理和维护两者之间的数据一致性。此外,利用现代化的数据同步工具可以进一步提高效率和可靠性。
63 6
|
3月前
|
消息中间件 NoSQL Go
PHP转Go系列 | ThinkPHP与Gin框架之Redis延时消息队列技术实践
【9月更文挑战第7天】在从 PHP 的 ThinkPHP 框架迁移到 Go 的 Gin 框架时,涉及 Redis 延时消息队列的技术实践主要包括:理解延时消息队列概念,其能在特定时间处理消息,适用于定时任务等场景;在 ThinkPHP 中使用 Redis 实现延时队列;在 Gin 中结合 Go 的 Redis 客户端库实现类似功能;Go 具有更高性能和简洁性,适合处理大量消息。迁移过程中需考虑业务需求及系统稳定性。
|
4月前
|
缓存 NoSQL 关系型数据库
(八)漫谈分布式之缓存篇:唠唠老生常谈的MySQL与Redis数据一致性问题!
本文来聊一个跟实际工作挂钩的老生常谈的问题:分布式系统中的缓存一致性。
170 11
|
5月前
|
缓存 NoSQL 关系型数据库
mysql和Redis如何保持数据一致性
文档讨论了在系统重建时如何处理数据库和缓存的一致性问题。关键点包括:数据库(如MySQL)和分布式ID生成器可能不宜轻易替换,而代码可以通过兼容性改造来适应新系统。文中以CPU、Memory和Disk的比喻解释了缓存(如Redis)在性能优化中的作用。为确保MySQL和Redis间的一致性,提到了四种策略:Read/Write Through、Write Behind、Cache Aside(先写数据库后更新缓存或先删除缓存后更新数据库)以及先写缓存后写数据库。考虑到读多写少和低频写操作的业务场景,最终选择了先写数据库后更新缓存的策略,并利用canal保证消息顺序性以实现最终一致性。