《驾驭大数据》一3.5 电力行业:智能电网数据的价值

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

本节书摘来异步社区《驾驭大数据》一书中的第3章,第3.5节,作者: 【美】Bill Franks 译者: 黄海 , 车皓阳 , 王悦 , 等 责编: 杨海玲,更多章节内容可以访问云栖社区“异步社区”公众号查看。

3.5 电力行业:智能电网数据的价值

驾驭大数据
智能电网是下一代电力基础设施。与我们周围经常见到的高压电传输相比,智能电网更先进更可靠。智能电网有非常复杂的监控、通信和发电系统,可以提供稳定如一的服务,如果出现停电和其他问题,可以更好更快地恢复。各类传感器和监控设备记录了电网本身和流经电流的许多信息。

智能电网中的一个环节是我们经常提到的智能电表。智能电表是一种传统电表的替代品。从外观上看,智能电表和我们一直使用的电表没有什么不同,但智能电表的功能更强大。以前抄表人员都是每隔几周或几个月就挨家挨户地抄电表,而智能电表可以每隔15分钟到一个小时从每一个家庭或企业自动地收集数据,甚至可以跨区或者跨电网收集数据。

虽然我们这里关注的是智能电表,但在智能电网中大量使用的传感器也值得一提。这些遍布智能电网但我们却看不到的传感器,它们收集到的数据从规模上使智能电表数据相形见绌。传感器每秒钟要从发电系统读取60次同步相量测量值,与记录家用电器开关状态的家庭网络一样,它们都是大数据的例子。普通人并不知道这些传感器的存在,但它们对电网来说十分重要。传感器要读取所有的电流数据和智能电网的设备状态,数据量非常非常大。

智能电网技术已经在欧洲和美洲的某些地方开始使用了。我们相信在不久的将来,世界上每一处电网都会被智能电网取代。电力公司因为使用了智能电网,它们所掌握的耗电数据量会以指数级增长。这类数据要怎样使用?下面我们来看一下。

使用智能电网数据
从用电管理的角度来看,智能电表数据可以帮助人们更好地理解电网中客户的需求层次。此外,这些数据也可以使消费者受益。例如业主可以选择把待测试的电器打开,与此同时保持其他电器的稳定,这时从智能电表处可以监控到详细的电力消耗情况,这样我们就可以明确地测量出各种电器究竟消耗了多少电量。

世界各国的电力公司现在都已经在积极地转向这样的定价模型,即按时间或需求量的变化来定价,智能电网的出现加速了这种趋势。电力公司的主要目标之一是利用新的定价程序来影响客户行为,减少高峰时段的用电量。为了应对用电高峰需要另建发电站,需要一大笔钱而且还会对环境造成很大的影响。如果用电成本可以灵活地根据时间来设定,并由智能电表来测量,我们就可以促使客户改变他们的用电行为。较低的峰值和较为平稳的用电需求等同于更少的对新基础设施的需求和更低的成本。

当然电力公司通过智能电表提供的数据还能识别出其他的各类趋势。哪些地方的用电量有所回落?哪些消费者每天或每周的用电需求比较相同?电力公司可以根据使用模式对客户进行分类,可以选择针对某些特定的群体开发产品和活动。使用这些数据我们还可以识别模式出现异常的那些地方,它们揭示了需要解决的问题。

实际上,电力公司有能力执行其他行业已经使用多年的客户分析工作。例如,电话公司知道我们月底的所有账单,但并不知道我们具体的通话。零售商店只知道整体销售状况,而不知道任何购买的细节信息。一家金融机构知道我们的月终余额,但并不了解我们这个月的资金流动状况。从很多方面讲,电力公司面对的这类数据对于理解客户而言仍略显不足。它们也有简单的月终汇总数据,但这种月结数据往往是估计值而不是实际的耗电量。

大数据可以改变一个行业

有时候,大数据真的可以改变一个行业,可以把分析应用提升到一个全新的高度。电力行业使用的智能电网数据就是一个这样的例子。不再受每月一次抄表的限制,耗电信息会以秒钟或分钟为间隔被测量。遍布电网的精巧传感器,使数据的使用变得与以往完全不同。以此开展的数据分析会在费率套餐、用电管理等诸多方面产生很多创新。

有了智能电表数据,我们就可以进行全新的分析,使大众全都受益。消费者可以根据自己的使用模式定制费率套餐,就像车载信息服务支持个性化的汽车保险费率那样。高峰时段用电客户比非高峰时段用电客户的收费要高。面对这样的刺激政策,我们会改变自己的用电模式,可能我们会在下午晚些时候再使用洗碗机而不是吃完午饭就马上使用。

电力公司也会有更准确的需求预测,它们能更清晰地识别出需求来自于哪些地方。它们还能了解某一类客户在某个时间的用电需求。电力公司可以使用不同的方法来驱动各种行为,使需求更加平稳,并降低异常需求峰值出现的频率。所有这些都会使对昂贵的新发电设备的需求受到抑制。

每一个家庭、每一个行业都能感受到智能电表数据产生的威力,这些数据能够让我们更好地跟踪、更积极地管理用电情况。我们不仅能节约用电,也能使这个世界更加低碳,还可以帮助大家省钱。如果我们能清楚地知道自己的耗电量比预期要多,我们肯定就会根据需要做出适当的调整。如果只使用每月账单,我们将无法识别出这种机会。但是,智能电表数据将使这一切变得简单。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
2月前
|
数据采集 分布式计算 DataWorks
ODPS在某公共数据项目上的实践
本项目基于公共数据定义及ODPS与DataWorks技术,构建一体化智能化数据平台,涵盖数据目录、归集、治理、共享与开放六大目标。通过十大子系统实现全流程管理,强化数据安全与流通,提升业务效率与决策能力,助力数字化改革。
76 4
|
20天前
|
机器学习/深度学习 传感器 大数据
大数据真能治堵吗?聊聊交通行业用数据疏通“城市血管”
大数据真能治堵吗?聊聊交通行业用数据疏通“城市血管”
64 4
|
1月前
|
存储 SQL Java
Java 大视界 -- Java 大数据在智能医疗手术风险评估与术前方案制定中的应用探索(203)
本文探讨了Java大数据技术在智能医疗手术风险评估与术前方案制定中的创新应用。通过多源数据整合、智能分析模型构建及知识图谱技术,提升手术风险预测准确性与术前方案制定效率,助力医疗决策智能化,推动精准医疗发展。
|
2月前
|
机器学习/深度学习 Java 大数据
Java 大视界 -- Java 大数据在智能政务公共资源交易数据分析与监管中的应用(202)
本篇文章深入探讨了 Java 大数据在智能政务公共资源交易监管中的创新应用。通过构建高效的数据采集、智能分析与可视化决策系统,Java 大数据技术成功破解了传统监管中的数据孤岛、效率低下和监管滞后等难题,为公共资源交易打造了“智慧卫士”,助力政务监管迈向智能化、精准化新时代。
|
2月前
|
传感器 机器学习/深度学习 算法
Java 大视界 -- Java 大数据在智能农业温室环境调控与作物生长模型构建中的应用(189)
本文探讨了Java大数据在智能农业温室环境调控与作物生长模型构建中的关键应用。通过高效采集、传输与处理温室环境数据,结合机器学习算法,实现温度、湿度、光照等参数的智能调控,提升作物产量与品质。同时,融合多源数据构建精准作物生长模型,助力农业智能化、精细化发展,推动农业现代化进程。
|
2月前
|
SQL 缓存 监控
大数据之路:阿里巴巴大数据实践——实时技术与数据服务
实时技术通过流式架构实现数据的实时采集、处理与存储,支持高并发、低延迟的数据服务。架构涵盖数据分层、多流关联,结合Flink、Kafka等技术实现高效流计算。数据服务提供统一接口,支持SQL查询、数据推送与定时任务,保障数据实时性与可靠性。
|
存储 机器学习/深度学习 人工智能
阿里云ODPS:在AI浪潮之巅,铸就下一代智能数据根基
在智能爆炸时代,ODPS正从传统数据平台进化为“AI操作系统”。面对千亿参数模型与实时决策挑战,ODPS通过流批一体架构、多模态处理、智能资源调度等技术创新,大幅提升效率与智能化水平。从自动驾驶到医疗联合建模,从数字孪生到低代码AI开发,ODPS正重塑企业数据生产力,助力全球客户在算力洪流中抢占先机。
107 0
|
2月前
|
数据采集 人工智能 安全
“数据会治病?”——大数据+电子健康记录,到底图啥?
“数据会治病?”——大数据+电子健康记录,到底图啥?
64 0
|
2月前
|
分布式计算 DataWorks 数据处理
在数据浪潮中前行:记录一次我与ODPS的实践、思考与展望
本文详细介绍了在 AI 时代背景下,如何利用阿里云 ODPS 平台(尤其是 MaxCompute)进行分布式多模态数据处理的实践过程。内容涵盖技术架构解析、完整操作流程、实际部署步骤以及未来发展方向,同时结合 CSDN 博文深入探讨了多模态数据处理的技术挑战与创新路径,为企业提供高效、低成本的大规模数据处理方案。
166 3

热门文章

最新文章