(Redis使用系列) Springboot 在redis中使用BloomFilter布隆过滤器机制 六

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: (Redis使用系列) Springboot 在redis中使用BloomFilter布隆过滤器机制 六

前言



该篇为redis使用系列的第六篇,在springboot整合redis基础上使用BloomFilter 布隆过滤器。


至于布隆过滤器的作用和实现的简单原理,该篇不做讲述,还不了解的可以先看我这篇

《JAVA 你应该有所了解的布隆过滤器》


OK,再啰嗦一下,相信点进来这篇的小伙伴,多半都跟redis缓存穿透有点渊源,是的,查询redis,为了防止他人恶意使用不存在的key访问redis,造成大批量的出现缓存穿透现象(直接查询数据库,导致数据库扛不住)。


而加入布隆过滤器,能很大程度去解决这个问题。


正文



首先是pom.xml文件,加入我们这次使用redis & BloomFilter 的核心依赖包:


        <!--使用Redis-->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-redis</artifactId>
        </dependency>
        <!--借助guava的布隆过滤器-->
        <dependency>
            <groupId>com.google.guava</groupId>
            <artifactId>guava</artifactId>
            <version>19.0</version>
        </dependency>


然后是yml的redis连接信息:


spring:
  redis:
    database: 3
    host: 127.0.0.1
    port: 6379
    password: 12345
    jedis.pool.max-idle: 100
    jedis.pool.max-wait: -1ms
    jedis.pool.min-idle: 2
    timeout: 2000ms


如果是一般的使用redis存字符串的话,使用StringRedisTemplate,就不需要配置序列化。


但是咱们这里使用的是RedisTemplate<String, Object> redisTemplate ,存储的是对象,所以为了防止存入的对象值在查看的时候不显示乱码,就需要配置相关的序列化(其实我们存的bit结构数据,布隆过滤器存值分分钟都是百万级别的,会因为数据量太大redis客户端也没办法显示,不过不影响使用)。


RedisConfig.class:


import com.fasterxml.jackson.annotation.JsonAutoDetect;
import com.fasterxml.jackson.annotation.PropertyAccessor;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.google.common.base.Charsets;
import com.google.common.hash.Funnel;
import com.jc.mytest.util.BloomFilterHelper;
import org.springframework.cache.CacheManager;
import org.springframework.cache.annotation.EnableCaching;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.cache.RedisCacheManager;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.data.redis.serializer.Jackson2JsonRedisSerializer;
/**
 * @Author: JCccc
 * @CreateTime: 2018-09-11
 * @Description:
 */
@Configuration
@EnableCaching
public class RedisConfig {
    @Bean
    public CacheManager cacheManager(RedisConnectionFactory connectionFactory) {
        RedisCacheManager rcm=RedisCacheManager.create(connectionFactory);
        return rcm;
    }
    @Bean
    public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory factory) {
        RedisTemplate<String, Object> redisTemplate = new RedisTemplate<String, Object>();
        redisTemplate.setConnectionFactory(factory);
        Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new
                Jackson2JsonRedisSerializer(Object.class);
        ObjectMapper om = new ObjectMapper();
        om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
        om.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);
        jackson2JsonRedisSerializer.setObjectMapper(om);
        //序列化设置 ,这样计算是正常显示的数据,也能正常存储和获取
        redisTemplate.setKeySerializer(jackson2JsonRedisSerializer);
        redisTemplate.setValueSerializer(jackson2JsonRedisSerializer);
        redisTemplate.setHashKeySerializer(jackson2JsonRedisSerializer);
        redisTemplate.setHashValueSerializer(jackson2JsonRedisSerializer);
        return redisTemplate;
    }
    @Bean
    public StringRedisTemplate stringRedisTemplate(RedisConnectionFactory factory) {
        StringRedisTemplate stringRedisTemplate = new StringRedisTemplate();
        stringRedisTemplate.setConnectionFactory(factory);
        return stringRedisTemplate;
    }
    //初始化布隆过滤器,放入到spring容器里面
    @Bean
    public BloomFilterHelper<String> initBloomFilterHelper() {
        return new BloomFilterHelper<>((Funnel<String>) (from, into) -> into.putString(from, Charsets.UTF_8).putString(from, Charsets.UTF_8), 1000000, 0.01);
    }
}


BloomFilterHelper .calss:


import com.google.common.base.Preconditions;
import com.google.common.hash.Funnel;
import com.google.common.hash.Hashing;
public class BloomFilterHelper<T> {
    private int numHashFunctions;
    private int bitSize;
    private Funnel<T> funnel;
    public BloomFilterHelper(Funnel<T> funnel, int expectedInsertions, double fpp) {
        Preconditions.checkArgument(funnel != null, "funnel不能为空");
        this.funnel = funnel;
        // 计算bit数组长度
        bitSize = optimalNumOfBits(expectedInsertions, fpp);
        // 计算hash方法执行次数
        numHashFunctions = optimalNumOfHashFunctions(expectedInsertions, bitSize);
    }
    public int[] murmurHashOffset(T value) {
        int[] offset = new int[numHashFunctions];
        long hash64 = Hashing.murmur3_128().hashObject(value, funnel).asLong();
        int hash1 = (int) hash64;
        int hash2 = (int) (hash64 >>> 32);
        for (int i = 1; i <= numHashFunctions; i++) {
            int nextHash = hash1 + i * hash2;
            if (nextHash < 0) {
                nextHash = ~nextHash;
            }
            offset[i - 1] = nextHash % bitSize;
        }
        return offset;
    }
    /**
     * 计算bit数组长度
     */
    private int optimalNumOfBits(long n, double p) {
        if (p == 0) {
            // 设定最小期望长度
            p = Double.MIN_VALUE;
        }
        int sizeOfBitArray = (int) (-n * Math.log(p) / (Math.log(2) * Math.log(2)));
        return sizeOfBitArray;
    }
    /**
     * 计算hash方法执行次数
     */
    private int optimalNumOfHashFunctions(long n, long m) {
        int countOfHash = Math.max(1, (int) Math.round((double) m / n * Math.log(2)));
        return countOfHash;
    }
}


然后是具体的布隆过滤器配合redis使用的 方法类,RedisBloomFilter.class :


import com.google.common.base.Preconditions;
import com.jc.mytest.util.BloomFilterHelper;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Service;
/**
 * @Author : JCccc
 * @CreateTime : 2020/4/23
 * @Description :
 **/
@Service
public class RedisBloomFilter {
    @Autowired
    private RedisTemplate redisTemplate;
    /**
     * 根据给定的布隆过滤器添加值
     */
    public <T> void addByBloomFilter(BloomFilterHelper<T> bloomFilterHelper, String key, T value) {
        Preconditions.checkArgument(bloomFilterHelper != null, "bloomFilterHelper不能为空");
        int[] offset = bloomFilterHelper.murmurHashOffset(value);
        for (int i : offset) {
           System.out.println("key : " + key + " " + "value : " + i);
            redisTemplate.opsForValue().setBit(key, i, true);
        }
    }
    /**
     * 根据给定的布隆过滤器判断值是否存在
     */
    public <T> boolean includeByBloomFilter(BloomFilterHelper<T> bloomFilterHelper, String key, T value) {
        Preconditions.checkArgument(bloomFilterHelper != null, "bloomFilterHelper不能为空");
        int[] offset = bloomFilterHelper.murmurHashOffset(value);
        for (int i : offset) {
            System.out.println("key : " + key + " " + "value : " + i);
            if (!redisTemplate.opsForValue().getBit(key, i)) {
                return false;
            }
        }
        return true;
    }
}


到这里,其实整合redis并使用BloomFilter布隆过滤器 的代码都已经完毕了。

 

存入值代码分析


在使用测试之前,稍微讲讲这里的流程、思路,我们把目光放到 存入值到布隆过滤器的方法addByBloomFilter上,


image.png


如果你了解过或者看过我文章开头说的那篇《JAVA 你应该有所了解的布隆过滤器》 ,那么你对这个方法的阅读就是一目了然。


红色框内的代码,就是把我们需要存入的value,通过算法计算出相关需要绑定 1的 bit位  的数组。


而蓝色框内的代码,就是将计算完得到的bit位数组,存入redis里面的bit结构里面,i就是数组内的bit位位置,每个都设置为true。


校验值代码分析


image.png


红色框内的代码,就是把我们需要校验的value,通过算法计算出相关需要绑定 1的 bit位 的数组。


而蓝色框内的代码,就是遍历计算完得到的bit位数组,检查在redis的bit结构里,是不是每一个都绑定了1(是不是都是true),


根据布隆过滤器的原则,只要有一个不是1(true),那么就是这个值不存在!


简单写两个接口,展示一下效果(测试直接写了两个get接口,没有结合其他业务逻辑):


    @Autowired
    RedisBloomFilter redisBloomFilter;
    @Autowired
    private BloomFilterHelper bloomFilterHelper;
    @ResponseBody
    @RequestMapping("/add")
    public String addBloomFilter(@RequestParam ("orderNum") String orderNum) {
        try {
            redisBloomFilter.addByBloomFilter(bloomFilterHelper,"bloom",orderNum);
        } catch (Exception e) {
            e.printStackTrace();
            return "添加失败";
        }
        return "添加成功";
    }
    @ResponseBody
    @RequestMapping("/check")
    public boolean checkBloomFilter(@RequestParam ("orderNum") String orderNum) {
        boolean b = redisBloomFilter.includeByBloomFilter(bloomFilterHelper, "bloom", orderNum);
        return b;
    }


先调用存值接口:


image.png


可以看到对于 存入的值,order20200423 ,计算出来7个bit位,这些都设置成true了。


接下来调用一下校验值接口,可以看到同样的值order20200423  计算出来的bit位一样,而且redis里面都是true,所以返回了存在(但是咱们知道布隆过滤器年迈,对于存在的检测,会随着存入的数据量的增大而慢慢出现误判):


image.png


那么咱们校验一个不存在的 值, 因为缓存穿透就是恶意查询不存在的值,例如id为 -1 这种情况(毕竟很多项目里,id的存值或者有一些key都是不考虑到负数的,而且接口还不做校验,所以-1基本不存在),


这时候布隆过滤器 校验结果,不存在!这个非常值得信赖,百分百是不存在的:


image.png


ps:


那么很多小伙伴是不是觉得布隆过滤器只能用来判断不存在 ,因为这个可信。 感觉有点不是滋味。


布隆过滤器因为保证效率,导致误判存在的情况的出现,这种情况其实也是能补救,解决方案思路很多,


我个人简单说一个,如果某个值判断存在,失误了,你发现了。 你可以把这个值存起来,例如就是一个误判列表那种,用redis的list结构也行。这样再加一层误判查询检索的逻辑环节,这样也是能起到一定程度的解决。


毕竟100万条数据,出现误判总量也就1000条, 也就是误判列表也就存1000个数据。


具体需不需使用到它的判断存在? 如果业务范围允许误判率跟布隆过滤器的误判率是相差不大的,也能使用。


对于一般的场景,咱们就是使用它来筛选不存在的值的。 因为它的 不存在 是肯定的。


OK,该篇就到此。  

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
16天前
|
NoSQL Java Redis
Spring Boot 自动配置机制:从原理到自定义
Spring Boot 的自动配置机制通过 `spring.factories` 文件和 `@EnableAutoConfiguration` 注解,根据类路径中的依赖和条件注解自动配置所需的 Bean,大大简化了开发过程。本文深入探讨了自动配置的原理、条件化配置、自定义自动配置以及实际应用案例,帮助开发者更好地理解和利用这一强大特性。
67 14
|
2月前
|
NoSQL Java API
springboot项目Redis统计在线用户
通过本文的介绍,您可以在Spring Boot项目中使用Redis实现在线用户统计。通过合理配置Redis和实现用户登录、注销及统计逻辑,您可以高效地管理在线用户。希望本文的详细解释和代码示例能帮助您在实际项目中成功应用这一技术。
46 4
|
2月前
|
消息中间件 NoSQL Java
Spring Boot整合Redis
通过Spring Boot整合Redis,可以显著提升应用的性能和响应速度。在本文中,我们详细介绍了如何配置和使用Redis,包括基本的CRUD操作和具有过期时间的值设置方法。希望本文能帮助你在实际项目中高效地整合和使用Redis。
67 2
|
3月前
|
存储 缓存 NoSQL
大数据-45 Redis 持久化概念 RDB AOF机制 持久化原因和对比
大数据-45 Redis 持久化概念 RDB AOF机制 持久化原因和对比
56 2
大数据-45 Redis 持久化概念 RDB AOF机制 持久化原因和对比
|
3月前
|
NoSQL Java Redis
redis的基本命令,并用netty操作redis(不使用springboot或者spring框架)就单纯的用netty搞。
这篇文章介绍了Redis的基本命令,并展示了如何使用Netty框架直接与Redis服务器进行通信,包括设置Netty客户端、编写处理程序以及初始化Channel的完整示例代码。
78 1
redis的基本命令,并用netty操作redis(不使用springboot或者spring框架)就单纯的用netty搞。
|
3月前
|
缓存 NoSQL Java
springboot的缓存和redis缓存,入门级别教程
本文介绍了Spring Boot中的缓存机制,包括使用默认的JVM缓存和集成Redis缓存,以及如何配置和使用缓存来提高应用程序性能。
133 1
springboot的缓存和redis缓存,入门级别教程
|
3月前
|
缓存 NoSQL Java
Spring Boot与Redis:整合与实战
【10月更文挑战第15天】本文介绍了如何在Spring Boot项目中整合Redis,通过一个电商商品推荐系统的案例,详细展示了从添加依赖、配置连接信息到创建配置类的具体步骤。实战部分演示了如何利用Redis缓存提高系统响应速度,减少数据库访问压力,从而提升用户体验。
167 2
|
3月前
|
架构师 Java 开发者
得物面试:Springboot自动装配机制是什么?如何控制一个bean 是否加载,使用什么注解?
在40岁老架构师尼恩的读者交流群中,近期多位读者成功获得了知名互联网企业的面试机会,如得物、阿里、滴滴等。然而,面对“Spring Boot自动装配机制”等核心面试题,部分读者因准备不足而未能顺利通过。为此,尼恩团队将系统化梳理和总结这一主题,帮助大家全面提升技术水平,让面试官“爱到不能自已”。
得物面试:Springboot自动装配机制是什么?如何控制一个bean 是否加载,使用什么注解?
|
3月前
|
JSON NoSQL Java
springBoot:jwt&redis&文件操作&常见请求错误代码&参数注解 (九)
该文档涵盖JWT(JSON Web Token)的组成、依赖、工具类创建及拦截器配置,并介绍了Redis的依赖配置与文件操作相关功能,包括文件上传、下载、删除及批量删除的方法。同时,文档还列举了常见的HTTP请求错误代码及其含义,并详细解释了@RequestParam与@PathVariable等参数注解的区别与用法。
|
3月前
|
NoSQL Java Redis
shiro学习四:使用springboot整合shiro,正常的企业级后端开发shiro认证鉴权流程。使用redis做token的过滤。md5做密码的加密。
这篇文章介绍了如何使用Spring Boot整合Apache Shiro框架进行后端开发,包括认证和授权流程,并使用Redis存储Token以及MD5加密用户密码。
45 0
shiro学习四:使用springboot整合shiro,正常的企业级后端开发shiro认证鉴权流程。使用redis做token的过滤。md5做密码的加密。