6000字 “保姆级” 教程 | 讲述Pandas库的数据读取、数据获取、数据拼接、数据写出!(一)

简介: 6000字 “保姆级” 教程 | 讲述Pandas库的数据读取、数据获取、数据拼接、数据写出!(一)

1. pandas介绍

Pandas是一个强大的数据分析库,它的Series和DataFrame数据结构,使得处理起二维表格数据变得非常简单。


基于后面需要对Excel表格数据进行处理,有时候使用Pandas库处理表格数据,会更容易、更简单,因此我这里必须要讲述。


Pandas库是一个内容极其丰富的库,这里并不会面面俱到。我这里主要讲述的是如何利用Pandas库完成 “表格读取”、“表格取数” 和 “表格合并” 的任务。其实Pandas能实现的功能,远远不止这些,关于利用该库如何实现数据清晰和图表制作,不是本书的研究范围,大家可以下去好好学习这个库。


在使用这个库之前,需要先导入这个库。为了使用方便,习惯性给这个库起一个别名pd,本书中只要是见到pd,指的都是Pandas。


2. Excel数据的读取

Pandas支持读取csv、excel、json、html、数据库等各种形式的数据,非常强大。但是我们这里仅以读取excel文件为例,讲述如何使用Pandas库读取本地的excel文件。


在Pandas库中,读取excel文件使用的是pd.read_excel()函数,这个函数强大的原因是由于有很多参数供我们使用,是我们读取excel文件更方便。在这里我们仅仅讲述sheet_name、header、usecols和names四个常用参数。


① sheet_name参数详解

我们知道一个excel文件是一个工作簿,一个工作簿有多个sheet表,每个sheet表中是一个表格数据。sheet_name参数就是帮助我们选择要读取的sheet表,具体用法如下。


sheet_name=正整数值,等于0表示读取第一个sheet表,等于1表示读取第二个sheet表,以此类推下去。


sheet_name=”sheet名称”,我们可以利用每张sheet表的名称,读取到不同的sheet表,更方便灵活。


注意:如果不指定该参数,那么默认读取的是第一个sheet表。


用法1:sheet_name=正整数值


df = pd.read_excel("readexcel.xlsx",sheet_name=1)
df


结果如下:

image.png

用法2:sheet_name=”sheet名称”


df = pd.read_excel("readexcel.xlsx",sheet_name="考试成绩表")
df


结果如下:

image.png


② header参数详解

有时候待读取的excel文件,可能有标题行,也有可能没有标题行。但是默认都会将第一行读取为标题行,这个对于没有标题行的excel文件来说,显得不太合适了,因此header参数可以很好的解决这个问题。


header=None,主要针对没有标题行的excel文件,系统不会将第一行数据作为标题,而是默认取一个1,2,3…这样的标题。


header=正整数值,指定哪一行作为标题行。


用法1:header=None


df = pd.read_excel("readexcel.xlsx",sheet_name="copy",header=None)
df


结果如下:

image.png

用法2:header=正整数值


df = pd.read_excel("readexcel.xlsx",sheet_name="基本信息表",header=1)
df


结果如下:

image.png


③ usecols参数详解

当一张表有很多列的时候,如果你仅仅想读取 这张表中的指定列,使用usecols参数是一个很好的选择。


关于usecols参数,这里有多种用法,我们分别进行说明。


usecols=None,表示选择一张表中的所有列,默认情况不指定该参数,也表示选择表中的所有列。


usecols=[A,C],表示选择A列(第一列)和C列(第三列)。而usecols=[A,C:E],表示选择A列,C列、D列和E列。


usecols=[0,2],表示选择第一列和第三列。


# 下面这两行代码,均表示获取前2列的数据
df = pd.read_excel("readexcel.xlsx",sheet_name="考试成绩表",usecols=[1,2])
df = pd.read_excel("readexcel.xlsx",sheet_name="考试成绩表",usecols="A:B")
df


结果如下:

image.png


④ names参数详解

如果一张表没有标题行,我们就需要为其指定一个标题,使用names参数,可以在读取数据的时候,为该表指定一个标题。


names=[“列名1”,”列名2”…]:传入一个列表,指明每一列的列名。


name_list = ["学号","姓名","性别","籍贯"]
df = pd.read_excel("readexcel.xlsx",sheet_name="copy",header=None,names=name_list)
df


结果如下:

image.png


3. Excel数据的获取

知道怎么读取excel文件中的数据后,接下来我们就要学着如何灵活获取到excel表中任意位置的数据了。


这里我一共提供了5种需要掌握的数据获取方式,分别是 “访问一列或多列” ,“访问一行或多行” ,“访问单元格中某个值” ,“访问多行多列” 。


① 什么是“位置索引”和标签索引

image.png

在讲述如何取数之前,我们首先需要理解“位置索引”和“标签索引”这两个概念。


每个表的行索引就是一个“标签索引”,而标识每一行位置的数字就是 “位置索引”,如图所示。


在pandas中,标签索引使用的是loc方法,位置索引用的是iloc方法。接下来就基于图中这张表,来带着大家来学习如何 “取数”。


首先,我们需要先读取这张表中的数据。


df = pd.read_excel("readexcel.xlsx",sheet_name="地区")
df


结果如下:

image.png

相关文章
|
4天前
|
数据采集 数据可视化 数据处理
Pandas高级数据处理:数据仪表板制作
《Pandas高级数据处理:数据仪表板制作》涵盖数据清洗、聚合、时间序列处理等技巧,解决常见错误如KeyError和内存溢出。通过多源数据整合、动态数据透视及可视化准备,结合性能优化与最佳实践,助你构建响应快速、数据精准的商业级数据仪表板。适合希望提升数据分析能力的开发者。
57 31
|
5天前
|
数据采集 并行计算 数据可视化
Pandas高级数据处理:数据报告生成实战指南
数据报告生成面临数据质量、计算性能、呈现形式和自动化等核心挑战。常见问题包括缺失值导致统计失真、内存溢出及可视化困难。解决方案涵盖数据清洗、分块处理、安全绘图模板等。通过模块化设计、异常处理机制和性能优化策略,如使用`category`类型、并行计算等,可大幅提升效率。最佳实践建议建立数据质量检查清单、版本控制和自动化测试框架,确保系统具备自适应能力,提升报告生成效率300%以上。
38 12
|
11天前
|
监控 物联网 数据处理
Pandas高级数据处理:数据流式计算
本文介绍了如何使用 Pandas 进行流式数据处理。流式计算能够实时处理不断流入的数据,适用于金融交易、物联网监控等场景。Pandas 虽然主要用于批处理,但通过分块读取文件、增量更新 DataFrame 和使用生成器等方式,也能实现简单的流式计算。文章还详细讨论了内存溢出、数据类型不一致、数据丢失或重复及性能瓶颈等常见问题的解决方案,并建议在处理大规模数据时使用专门的流式计算框架。
138 100
Pandas高级数据处理:数据流式计算
|
28天前
|
机器学习/深度学习 搜索推荐 数据挖掘
Pandas数据应用:广告效果评估
在数字化营销中,广告效果评估至关重要。Pandas作为Python的强大数据分析库,在处理广告数据时表现出色。本文介绍如何使用Pandas进行广告效果评估,涵盖数据读取、预览、缺失值处理、数据类型转换及常见报错解决方法,并通过代码案例详细解释。掌握这些技能,可为深入分析广告效果打下坚实基础。
41 17
|
29天前
|
数据采集 供应链 数据可视化
Pandas数据应用:供应链优化
在当今全球化的商业环境中,供应链管理日益复杂。Pandas作为Python的强大数据分析库,能有效处理库存、物流和生产计划中的大量数据。本文介绍如何用Pandas优化供应链,涵盖数据导入、清洗、类型转换、分析与可视化,并探讨常见问题及解决方案,帮助读者在供应链项目中更加得心应手。
50 21
|
3月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
114 0
|
3月前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
83 2
|
4月前
|
机器学习/深度学习 并行计算 大数据
【Python篇】深入挖掘 Pandas:机器学习数据处理的高级技巧
【Python篇】深入挖掘 Pandas:机器学习数据处理的高级技巧
114 3
|
4月前
|
数据采集 数据挖掘 API
Python数据分析加速器:深度挖掘Pandas与NumPy的高级功能
在Python数据分析的世界里,Pandas和NumPy无疑是两颗璀璨的明星,它们为数据科学家和工程师提供了强大而灵活的工具集,用于处理、分析和探索数据。今天,我们将一起深入探索这两个库的高级功能,看看它们如何成为数据分析的加速器。
67 1
|
5月前
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
148 1